1. In the following table, rows represent reality and columns represent the decision:

	0	1
0	4	7
1	3	2

Compute the:

- (a) FPR (false positive rate)
- (b) TPR (true positive rate)
- (c) FNR (false negative rate)
- (d) FDP (false discovery proportion)

Is the classifier represented by this table a good or a bad classifier? Why?

- 2. Conceptual questions about *p*-values:
 - (a) Circle the correct bold-faced word: Small *p*-values give evidence that the **null/alternative** hypothesis is true.
 - (b) Complete the statement: Under the null hypothesis, the distribution of *p*-values is
 - (c) If the null hypothesis is true, what is the probability of obtaining a *p*-value that is less than or equal to 0.01?
- 3. Consider a test for a disease, where the test has a false positive rate of 1% and a true positive rate of 80%.
 - (a) Suppose the proportion of people that have the disease is 5%. Conditional on a positive test, how likely is a person to actually have the disease?
 - (b) What is the name of the conditional probability in the previous question?
 - (c) Suppose instead that the proportion of people with the disease is 0.1%. Now how likely is a person to have the disease, conditional on a positive test?
- 4. For a real-valued random variable X, consider the following two hypothesis:

$$H_0: X \sim \text{Uniform}([0,1]), \quad H_1: X \sim \text{Uniform}([0.5,1.5]).$$
 (1)

We would like a test with a false positive rate of at most 0.05. What is the best possible true positive rate?

Note interestingly that Neyman-Pearson does not work here, because the likelihood ratio is not a continuous function.

5. Multiple Hypothesis Testing with the Benjamini-Hochberg Procedure

In this question we analyze the properties of the Benjamini-Hochberg (BH) procedure. Recall the steps of the procedure:

Algorithm 1 The Benjamini-Hochberg Procedure input: FDR level α , set of n p-values P_1, \ldots, P_n Sort the p-values P_1, \ldots, P_n in non-decreasing order $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(n)}$ Find $K = \max\{i \in \{1, \ldots, n\} : P_{(i)} \leq \frac{\alpha}{n}i\}$ Reject the null hypotheses (declare discoveries) corresponding to $P_{(1)}, \ldots, P_{(K)}$

- (a) We have 10 *p*-values for multiple hypothesis testing: 0.001, 0.003, 0.012, 0.015, 0.08,0.09, 0.1, 0.14, 0.16, 0.28. Suppose we would like to control the FDR at the level 0.05. How many tests does the BH procedure reject?
- (b) Suppose $P_1 = P_2 = \cdots = P_n = \alpha$, and we run BH under level α on these p-values. How many discoveries does BH make? Explain.
- (c) Suppose $P_1 = P_2 = \cdots = P_{n-1} = \alpha$, $P_n = \alpha + 0.001\alpha$, and we run BH under level α on these p-values. How many discoveries does BH make? Explain.
- 6. Challenge question. Consider the probability density function $f_{\theta}(x) = \theta x^{\theta-1}$ where 0 < x < 1. We wish to design a test to discern between the null hypothesis that $\theta = 3$, and the alternative hypothesis that $\theta = 4$.
 - (a) Derive the most powerful test that has significance level less than α .
 - (b) What is the power of the test, i.e. its true positive rate?
 - (c) Now suppose that there were two possible alternatives: either $\theta = 2$ or $\theta = 4$. You would like to design a test with significance level α , which has good power under both alternatives. How would you go about doing this? (*Note:* This question is somewhat open-ended: there may be multiple good strategies.)