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Announcements

HW2 is due next week
Intro to HW OH on Friday; HW party and extra OH next week

Limit one slip day for HW2, so that we can release solutions before
the exam

Midterm 1 coming up on 10/5
Covers everything through Lecture 12 (next Thurs), Lab 4 (next week),
HW2, and Discussion 5 (next week)
Will release more info + practice tests soon
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Last Time

Rejection sampling

Markov chain review

This time: Markov chain Monte Carlo

Gibbs sampling

Metropolis-Hastings
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Why Sampling? (Exponential Sums)

Running example: person i , gender zi ∈ {0,1}, height xi ∈ R,
hyperparameters θ = (α,β ,π)

How to do inference in this model?

Method 1: place prior on θ , sample p(θ ,z | x)

Method 2: maximize log p(x | θ) = log
(

∑z p(x ,z | θ)
)

“half-Bayesian” (not this class)

How many possibilities for z? Height/gender example:

100 people, genders z1, . . . ,z100

2100 ≈ 1030 possibilities

This is why we need good sampling algorithms!
(General term: “approximate inference”)
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Gibbs Sampling: Motivation

Have an arbitrary distribution p(x1, . . . ,xn) that we want to sample from

Current tool: rejection sampling
Proposal distribution q(x1, . . . ,xn) for all xi at once
Issue: too slow (typically exponentially small acceptance rate in n)
E.g. even if xi are independent, and q(xi )/p(xi )≤ 1.1, need 1.1n tries
(≈ 2.5 ·1041 for n = 1000)

Idea behind Gibbs sampling: change one variable at a time (Markov
chain)
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Gibbs Sampling: Algorithm

Algorithm:

Initialize (x1, . . . ,xn) arbitrarily
Repeat:

Pick i (randomly or sequentially)
Re-sample xi from p(xi | x1, . . . ,xi−1,xi+1, . . . ,xn) (often denote p(xi | x−i ))

Defines a Markov chain, and can prove that the stationary distribution is
p(x1, . . . ,xn) (!!).
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Gibbs Sampling: Unit Circle Example
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Gibbs Sampling for Hierarchical Models

Recall hierarchical models (e.g. height and gender example)

θ

z1 z2 · · · zn

x1 x2 · · · xn

Suppose we want to do Gibbs sampling for this model

Sample zi : p(zi | xi ,θ) ∝ p(zi | θ)︸ ︷︷ ︸
prior

p(xi | zi )︸ ︷︷ ︸
likelihood

Sample θ (e.g. µ0 for height/gender model):

p(µ0 | z1:n,x1:n) ∝ p(µ0)︸ ︷︷ ︸
prior

· ∏
i:zi=0

exp(−(xi −µ0)2/2σ
2)︸ ︷︷ ︸

likelihood
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Proof sketch for stationary distribution

Assuming chain is ergodic, just need to show stationary distribution is
preserved.

Suppose x ∼ p and x ′ is obtained from x by Gibbs sampling update.
Want to show that x ′ is also distributed according to p.

If index i is updated, then x ′ = (x1, . . . ,xi−1,x ′i ,xi+1, . . .), where
x ′i ∼ p(xi | x1, . . . ,xi−1,xi+1, . . .).

Indices 6= i distributed according to p, and x ′i | x ′−i is as well, so x ′ follows p.
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Ergodicity: counterexample

Suppose that x1,x2 ∈ {0,1} with following probability table:

0 1
0 0.5 0.0
1 0.0 0.5

What will Gibbs sampling do?
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Gibbs Sampling: Summary

Repeatedly sample from p(xi | x−i)

Creates Markov chain whose stationary distribution is p(x1, . . . ,xn)

Flexible: conditional p(xi | x−i) one-dimensional, easy to sample from

Don’t need to “get lucky” with graphical model structure

Extensions, e.g. block Gibbs sampling

J. Steinhardt MCMC September 23, 2021 11 / 15



Metropolis-Hastings: Idea

Gibbs sampling: one possible Markov chain

Is there a more general strategy?

Yes! Combine with idea of rejection sampling

Given any “proposed Markov chain” q(xnew | xold), will combine with an
accept/reject step to create new Markov chain with the correct stationary
distribution
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Metropolis-Hastings: Algorithm

Proposal distribution: q(xnew | xold)

Given xold:

Sample xnew from q

With probability

min
(

1, p(xnew)
p(xold)

q(xold|xnew)
q(xnew|xold)

)

, accept (replace xold with

xnew)

Otherwise, reject (keep xold)

Gibbs sampling: special choice of q where we always accept!
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Proof sketch: Detailed balance

Can show that if an ergodic Markov chain satisfies
p̄(x)A(x ′ | x) = p̄(x ′)A(x | x ′) for all x ,x ′, then it has stationary distribution p̄.

This condition is called detailed balance.

Metropolis-Hastings sets probabilities so that detailed balance holds.
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Mixing time

Performance of MCMC algorithms governed by mixing time: how long it takes
to get close to stationary distribution.

Mixing time can vary dramatically, from nearly linear to exponential in number
of variables.

[mixing time examples: on board]
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