Lecture 8: Rejection Sampling and Markov chain review

Jacob Steinhardt

September 21, 2021
Announcements

- Emails were sent out to students taking the DSP exam, the alternative exam and the remote exam.
- If you haven’t received an email and fall into one of the category above, please email data102@berkeley.edu asap :)
Last Time

- Latent variable models
 - Bayesian hierarchical model (COVID meta-analysis)
 - Hidden Markov model (ice cores)
 - (Optional) Election forecasting model

This time:

- Wrap-up: graphical models and conditional independence
- New topic: approximate inference via sampling algorithms
Independence (of random variables X and Y)

- Knowing X doesn’t “tell you anything” about Y
- Notation: $X \perp \!\!\!\!\!\!\!\!\!\!\perp Y$
- Equivalent conditions: $p(x, y) = p(x)p(y)$, or $p(x \mid y) = p(x)$ for all y
Independence and Conditional Independence

Independence (of random variables X and Y)

- Knowing X doesn’t “tell you anything” about Y
- Notation: $X \perp \perp Y$
- Equivalent conditions: $p(x, y) = p(x)p(y)$, or $p(x \mid y) = p(x)$ for all y

Conditional independence:

- $X \perp \perp Y \mid Z$
- Knowing X doesn’t tell you anything about Y, once you know Z
Independence (of random variables X and Y)

- Knowing X doesn’t “tell you anything” about Y
- Notation: $X \perp \perp Y$
- Equivalent conditions: $p(x, y) = p(x)p(y)$, or $p(x \mid y) = p(x)$ for all y

Conditional independence:

- $X \perp \perp Y \mid Z$
- Knowing X doesn’t tell you anything about Y, once you know Z
- Air purifier: probability θ of good review, actual reviews X_1, X_2
Independence and Conditional Independence

Independence (of random variables X and Y)

- Knowing X doesn’t “tell you anything” about Y
- Notation: $X \perp \!\!\!\!\!\!\perp Y$
- Equivalent conditions: $p(x, y) = p(x)p(y)$, or $p(x \mid y) = p(x)$ for all y

Conditional independence:

- $X \perp \!\!\!\!\!\!\perp Y \mid Z$
- Knowing X doesn’t tell you anything about Y, once you know Z
- Air purifier: probability θ of good review, actual reviews X_1, X_2
- $X_1 \perp \!\!\!\!\!\!\perp X_2 \mid \theta$. But $X_1 \not\perp \!\!\!\!\!\!\perp X_2$.
[Alarm example, on board]
Three Important Structures

General rule: “d-separation” (not needed in this class)
Sampling
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?
Sampling: General Idea

Have a distribution \(p(x) \) or \(p(x_1, x_2, \ldots) \)

Want some way of “querying” the distribution. E.g.:
- What is the variance?
- What is the probability that \(x_2 > x_1 \)?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples \(x^{(1)}, \ldots, x^{(S)} \sim p \).
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic f: $\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic f: $\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$
 - $f(x) = (x, x^2)$ (variance)
 - $f(x_1, x_2) = \mathbb{I}[x_2 > x_1]$
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic f: $\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$
 - $f(x) = (x, x^2)$ (variance)
 - $f(x_1, x_2) = \mathbb{I}[x_2 > x_1]$

Interpretable, efficient way to represent a distribution
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic f: $\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$
 - $f(x) = (x, x^2)$ (variance)
 - $f(x_1, x_2) = \mathbb{I}[x_2 > x_1]$

- Interpretable, efficient way to represent a distribution
- How many samples to get error ε?
Sampling: General Idea

Have a distribution $p(x)$ or $(p(x_1, x_2, \ldots))$

Want some way of “querying” the distribution. E.g.:

- What is the variance?
- What is the probability that $x_2 > x_1$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic f: $\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$

 $f(x) = (x, x^2)$ (variance)

 $f(x_1, x_2) = \mathbb{I}[x_2 > x_1]$

Interpretable, efficient way to represent a distribution

How many samples to get error ε? $O(1/\varepsilon^2)$
Eventual target: Metropolis-Hastings algorithm (MCMC)

- Named among the “top 10 algorithms of the 20th century”
Eventual target: Metropolis-Hastings algorithm (MCMC)

- Named among the “top 10 algorithms of the 20th century”

First, need some build-up:

- Rejection sampling
- Markov chains
How to sample uniformly from the blue region?
Rejection sampling

[Jupyter demos]
Rejection sampling

[on board: general algorithm and normalization constant]
Rejection sampling

Input:

- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)
Rejection sampling

Input:
- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Algorithm:
- For $s = 1, \ldots, S$:
 - Sample $x \sim q$
 - With probability $p(x)/q(x)$, accept x and add to list of samples
 - Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples

Cons: can be slow (curse of dimensionality)
Rejection sampling

Input:
- Proposal distribution \(q(x) \) (that we can sample from)
- Target distribution \(p(x) \) (unnormalized; must satisfy \(p(x) \leq q(x) \) for all \(x \))

Algorithm:
- For \(s = 1, \ldots, S \):
 - Sample \(x \sim q \)
 - With probability \(p(x)/q(x) \), accept \(x \) and add to list of samples
 - Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples
Rejection sampling

Input:
- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Algorithm:
- For $s = 1, \ldots, S$:
 - Sample $x \sim q$
 - With probability $p(x)/q(x)$, accept x and add to list of samples
 - Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples
Cons: can be slow (curse of dimensionality)
Markov chains
Markov chain: sequence x_1, x_2, \ldots, x_T where distribution of x_t depends only on x_{t-1}

Defined by transition distribution $A(x^\text{new} | x^\text{old})$, together with initial state x_1

Examples:

- Random walk on a graph
- Repeatedly shuffling a deck of cards
- Process defined by

$$x_1 = 0, \quad x_t | x_{t-1} \sim N(0.9x_{t-1}, 1)$$
All “nice enough” Markov chains have the property that if T is large enough, the distribution over x_T is almost independent of x_1, and converges to some distribution $\bar{p}(x)$ as $T \to \infty$.

$\bar{p}(x)$ is called the stationary distribution, and the technical condition for “nice enough” is that the Markov chain is ergodic.
All “nice enough” Markov chains have the property that if T is large enough, the distribution over x_T is almost independent of x_1, and converges to some distribution $\bar{p}(x)$ as $T \to \infty$.

$\bar{p}(x)$ is called the *stationary distribution*, and the technical condition for “nice enough” is that the Markov chain is *ergodic*.
All “nice enough” Markov chains have the property that if T is large enough, the distribution over x_T is almost independent of x_1, and converges to some distribution $\bar{p}(x)$ as $T \to \infty$.

$\bar{p}(x)$ is called the *stationary distribution*, and the technical condition for “nice enough” is that the Markov chain is *ergodic*.

The distribution $\bar{p}(x)$ is also what we get if we count how many times x_t visits each state, as $T \to \infty$.
The *mixing time* is how long it takes for x_T to be close to the stationary distribution (we won’t define this formally).
Markov Chains: Mixing Time

The *mixing time* is how long it takes for x_T to be close to the stationary distribution (we won’t define this formally).

Example: card shuffling

- Mixing time is how many shuffles we need for deck to be “almost random”
The *mixing time* is how long it takes for x_T to be close to the stationary distribution (we won’t define this formally).

Example: card shuffling
- Mixing time is how many shuffles we need for deck to be “almost random”

Other examples:
- Random walk on complete graph with n vertices
- Random walk on path of length n
TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

BY DAVE BAYER\(^1\) AND PERSI DIACONIS\(^2\)

Columbia University and Harvard University

We analyze the most commonly used method for shuffling cards. The main result is a simple expression for the chance of any arrangement after any number of shuffles. This is used to give sharp bounds on the approach to randomness: \(\frac{3}{2} \log_2 n + \theta\) shuffles are necessary and sufficient to mix up \(n\) cards.

Key ingredients are the analysis of a card trick and the determination of the idempotents of a natural commutative subalgebra in the symmetric group algebra.

1. Introduction. The dovetail, or riffle shuffle is the most commonly used method of shuffling cards. Roughly, a deck of cards is cut about in half and then the two halves are riffled together. Figure 1 gives an example of a riffle shuffle for a deck of 13 cards.

A mathematically precise model of shuffling was introduced by Gilbert and Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of \(n\) cards is cut into two portions according to a binomial distribution; thus, the chance that \(k\) cards are cut off is \(\binom{n}{k}/2^n\) for \(0 \leq k \leq n\). The two packets are then riffled together in such a way that cards drop from the left or right heaps...
Markov chains: recap

- Governed by proposal distribution $A(x^{\text{new}} \mid x^{\text{old}})$
- Stationary distribution: limiting distribution of x_T
- Mixing time: how long it takes to get to stationary distribution