
DS 102 Discussion 7
Wednesday, October 20, 2021

1. Activation Functions for Neural Networks

We saw in lecture that neural networks can learn complex, non-linear patterns within
data using activation functions. One simple activation function which you’ve seen in
this class before is the sigmoid function used in Logistic Regression, defined as:

σ(x) =
1

1 + exp(−x))

However, most modern-day implementations of neural networks avoid using sigmoid
functions for the nonlinearity, and instead favor functions like the REstricted Linear
Unit, commonly abbreviated as ReLU. This function is defined as follows:

ReLU(x) = max(0, x)

We can visualize what these activation functions look like in the plot below:

(a) Sketching the Derivatives

Referencing the plot above, sketch the derivatives of the sigmoid and ReLU activa-
tion functions, overlaid on the same plot.



(b) Behavior of Activation Functions

What happens to the derivative for each of the activation functions as the input
gets large?

(c) The Vanishing Gradient Problem

When optimizing neural networks, why is it bad for the gradient values to be 0?
What can you do to avoid this problem?

Page 2



2. Backpropagation for a Two-Layer Neural Network

Consider a two-layer neural network that computes a real-valued function of the form
fAb(x) = bTσ(Ax) where x ∈ Rm, A ∈ Rh×m, b ∈ Rh, and σ is the element-wise sigmoid
function given by σ(x) = 1/(1 + exp(−x)) (the subscript notation in fAb is used to
emphasize that A and b are the parameters of the function). In other words, the neural
network has input size m, h units in the hidden layer, and a single scalar output. Note
that this model is a simplification of what we saw in Lecture since we do not have a bias
term.

The neural network fAb can be trained to predict a real-valued output given an m-
dimensional input (a regression problem). Given a dataset of n input-output pairs,
{(xi, yi)}ni=1, a common way of training a neural network to perform this task is to find
the parameter values (values of the matrix A and the vector b) that minimize the squared
error loss over the dataset:

argmin
A,b

n∑
i=1

(yi − fAb(xi))
2 = argmin

A,b

n∑
i=1

(yi − bTσ(Axi))
2.

To perform this minimization, gradient descent is conducted on the loss with respect to
the parameters A, b.

For simplicity, here we’ll just focus on the partial derivatives of the squared error loss
evaluated on a single data point, (x, y):

L(A, b) = (y − fAb(x))2 = (y − bTσ(Ax))2. (1)

Backpropagation leverages the chain rule, along with dynamic programming, to compute
the required partial derivatives ∂L(A,b)

∂A
and ∂L(A,b)

∂b
in an efficient way. This requires first

computing intermediate quantities in the computation graph in what’s called a “forward
pass”. That is, backpropagation first computes L(A, b) by computing the quantities
z1 = Ax, z2 = σ(z1), z3 = bT z2, the error z4 = y − z3, then finally the loss L(A, b) = z24 .
Backpropagation then performs a “backward pass” to compute the partial derivatives,
starting with ∂L(A,b)

∂b
.

(a) Drawing a Computation Graph

For the loss function defined in Equation (1), draw the corresponding computation
graph. Label intermediate quantities z1, z2, z3, and z4 in the graph.

Page 3



(b) Updating b

Using the chain rule, write down an expression for ∂L(A,b)
∂b

. Use intermediate quan-
tities from the forward pass (the z variables) listed above wherever possible, since
these have already been computed after the forward pass.

Hint: Note that b is an h-dimensional vector, so the partial derivative will be an
h-dimensional vector. The expression bTσ(Ax) = bT z2 is a dot product between the
vector b and the vector z2. Recall that for a dot product between two vectors vTw,
we have ∂vTw

∂v
= w.

(c) Updating A

Using the chain rule, write down an expression for ∂L(A,b)
∂A

. Once again, use the
intermediate quantities from the forward pass wherever possible.

Hint: A is an h×m-dimensional matrix, so the partial derivative will be an h×m-
dimensional matrix. You can approach this problem by noting that

∂L(A, b)

∂A
= 2(y − bTσ(Ax)) · −∂b

Tσ(Ax)

∂A

and finding the partial derivative of bTσ(Ax) with respect to each element Aij of
A. Use this result to write the partial derivative of A in terms of matrices and/or
vectors. Note that the derivative of the sigmoid function is d

dx
σ(x) = σ(x)(1−σ(x)).

Page 4



(d) Why use Backpropagation?

Go back to the computation graph you drew in Part (a). If you were to compute
the derivatives for weights A and b one at a time, how many total derivatives would
you need to compute to perform one round of weight updates? In comparison, how
many derivatives many does the backpropagation algorithm actually compute? How
would these numbers change as the neural network becomes more complex (e.g.
adding more layers)?

Page 5


