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1. Bootstrap and the Sample Maximum

Let X1, X2, ..., Xn represent i.i.d draws from a Uniform[0, 1] distribution. We wish to
use the bootstrap to understand the sampling distribution of the maximum,

Mn = max{X1, X2, ..., Xn}

We will use X∗1 , X
∗
2 , ..., X

∗
n to denote the bootstrap resamples.

(a) Finding the distribution of the Sample Maximum

Compute P [Mn ≤ t]. Use this to compute the density of Mn.



(b) Accuracy of Bootstrap Max estimates

Let M∗
n = max{X∗1 , X∗2 , ..., X∗n}. Find P [M∗

n = Mn].

(c) Quality of Bootstrap approximation of Mn

Is the distribution of M∗
n a good approximation for the distribution of Mn? Why is

this result to be expected?

Hint: Use the fact that limn→∞
(
1− 1

n

)n
= e−1.
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2. Bootstrap for Classification Models

(a) Identifying Decision Boundaries

We have the following data set of two classes: X and O. Draw two plausible
decision boundaries corresponding to a Logistic Regression classifier and a Decision
Tree classifier overlaid on the scatter plot. Assume the Decision Tree is trained
without a depth limit.
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(b) Changing Decision Boundaries with Data Shifts

Now, we flip the data point at (7, 1) from O to X, as shown in the following
scatter plot. Once again, draw two plausible decision boundaries corresponding to
a Logistic Regression classifier and a Decision Tree classifier overlaid on the scatter
plot. How do the decision boundaries of each classifier change?
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(c) Data Shifts and Bootstrapping

Based on your answers to (a) and (b), would bootstrapping provide a viable way
to estimate the uncertainty of Logistic Regression and Decision Tree models? For
which model would bootstrapping perform worse?
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3. Trees, Forests, Bias, and Variance

Recall that we can express the Frequentist Risk of a decision procedure δ(x) with respect
to parameter θ as:

R(θ) = E
[
(δ(x)− θ)2

]
= E

[
(δ(x)− E[δ(x)])2

]︸ ︷︷ ︸
Variance of δ(x)

+ (E[δ(x)]− θ)2︸ ︷︷ ︸
Bias2 of δ(x)

If our decision is a prediction for y that we call ŷ and δ(x) = ŷ(x), then we can re-write
the above expression as:

E[(ŷ(x)− y)2] = E
[
(ŷ(x)− E[ŷ(x)])2

]︸ ︷︷ ︸
Variance of prediction ŷ(x)

+ (E[ŷ(x)]− y)2︸ ︷︷ ︸
Bias2 of ŷ(x)

In this question, we will consider the bias-variance decomposition for two non-parametric
models: Decision Trees and Random Forests.

(a) Bias-Variance Decomposition for Decision Trees

Consider a Decision Tree trained without a limit on depth. Describe this model’s
bias and variance.

(b) Bias-Variance Decomposition for Random Forests

Compare a Random Forest’s bias and variance to those of a Decision Tree. Which
model would you expect to generalize better to unseen data and why?
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