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The past few lectures have looked at how to perform Bayesian inference using Markov
Chain Monte Carlo sampling methods. These methods involve drawing samples using a
Markov Chain, whose steady-state distribution is a specified target distribution. Since the
goal of Bayesian inference is to get the posterior distribution of the parameters given the data,
P(θ | X), MCMC algorithms can be used to draw samples from the posterior distribution.
Often times, the posterior is difficult to derive in closed form, so MCMC methods are an
efficient way of approximating it.

1. Gibbs Sampling for Gamma-Poisson model

When the dimension of the parameters is large, sampling from the posterior over all the
parameters θ is also often difficult. The main insight behind Gibbs sampling is that it
can be much easier to sample the posterior over just a single parameter, P(θi | X, θ−i)
(where we use the index−i to mean all indices except for i). Gibbs sampling then iterates
through each parameter θi and samples from P(θi | X, θ−i). This loop is repeated, each
time conditioning on the newly sampled values. Iterating through each parameter θi and
sampling from P(θi | X, θ−i) is not the same thing as sampling from P(θ | X). However,
the good news is that given enough iterations, the former converges to the latter.

Consider the hierarchical Bayes model where

β ∼ Gamma(m,α)

θi | β ∼ Gamma(k, β), i = 1, . . . , n

Xi | θi ∼ Pois(θi), i = 1, . . . , n,

where the θi are independent of each other and the Xi are independent of each other.
The β and θi are unknown parameters, and m, α, and k are fixed and known.

We’d like to infer the parameters β and the θ from the data X. That is, we’d like to
sample from the posterior distribution P(β, θ | X) using Gibbs sampling. This entails
deriving the posterior of each parameter, conditioned on the data and all the other
parameters.



(a) Drawing the graphical model

Draw a graphical model which best represents the specified Gamma-Poisson model.

(b) Finding the conditional distribution of β

Let’s start with β. Derive P(β | θ1, . . . , θn, X1, . . . , Xn).
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(c) Finding the conditional distribution of θi

Next, we’ll look at each θi. Derive P(θi | β, θ1, . . . , θi−1, θi+1, . . . , θn, X1, . . . , Xn)

(d) Using the posteriors you derived in the last two parts, write out the algorithm for
the Gibbs sampler.
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2. Metropolis-Hastings

This problem proves properties of the Metropolis-Hastings Algorithm.

Recall that the goal of MH was to draw samples from a distribution p(x). The algorithm
assumes we can compute p(x) up to a normalizing constant via f(x), and that we have
a proposal distribution g(x, ·). The steps are:

• Propose the next state y according to the distribution g(x, ·).
• Accept the proposal with probability

A(x, y) = min

(
1,
f(y)

f(x)

g(y, x)

g(x, y)

)
.

• If the proposal is accepted, then move the chain to y; otherwise, stay at x.

The key to showing why Metropolis-Hastings works is to look at the detailed balance
equations. Suppose we have a finite irreducible Markov chain on a state space X with
transition matrix P . If there exists a distribution π on X such that for all x, y ∈ X ,

π(x)P (x, y) = π(y)P (y, x),

then π is a stationary distribution of the chain (i.e. πP = π).

(a) For the Metropolis-Hastings chain, what is P (x, y) in this case? For simplicity,
assume x 6= y.
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(b) Show p(x), our target distribution, satisfies the detailed balance equations with
P (x, y), and therefore is the stationary distribution of the chain.
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3. Interpreting the Logistic Model

In this problem, we fit a logistic regression model on a subset of the famous iris dataset.
We have 100 samples of iris flowers, and measure their sepal length, sepal width, petal
length and petal width. The response labels are whether they belong to the Virginica
species (1) or the Versicolor species (0).

Let’s say we fit a Logistic regression model to predict the iris species, using only the
sepal features. Then, our data is represented in the following plot:

(a) Interpreting a coefficient of a logistic model

Suppose after fitting the aforementioned logistic regression model, you observe the
following output:

Assuming that the model is correct, write in one sentence an interpretation for the
logistic model with respect to sepal length. What happens to the interpretation if
the model is misspecified?

Hint: Recall that the logistic model is
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log

(
p

1− p

)
= xTβ

where p is the probability of the sample with feature vector x being in class 1. The
quantity on the left hand side is called the log odds ratio.

(b) Comparing Goodness-of-Fit

We now build another logistic model which additionally includes petal width as a
feature. You are presented with the following summary output:

Which model has a better fit? How can you tell?
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(c) Selecting a Model

It could be the case that for the some data, we can have two very different models,
Model A and Model B, both achieving very good fit. In this case, which should we
use to interpret the data generating process?
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