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1. Decision Theory: Computing and Minimizing the Bayes Risk

For the following two parts, derive the decision procedure δ∗ that minimizes the Bayes
risk, for the given loss function. That is, provide an expression for

δ∗ = argmin
δ

R(δ)

where the Bayes risk R(δ) can be written out as

R(δ) = Eθ,X [`(θ, δ(X))] = EX [Eθ[`(θ, δ(X)) | X]].

Hint. One strategy to find the decision rule that minimizes the Bayes risk is based on
the following rationale. For any given value of the data, X = x, the quantity δ(x) is
simply a scalar value. Suppose, for any given value of X = x, we can find the scalar
value δ∗(x) = a∗ ∈ R such that

a∗ = argmin
a∈R

Eθ[`(θ, a) | X = x]

(that is, a∗ is the scalar value that minimizes the Bayes posterior risk for this particular
value of X = x). Then, the rule given by this computation of δ∗(x) (for each value of
X = x) must also be the one that minimizes the Bayes risk, which just takes an expecta-
tion over all possible values of X. This is sometimes referred as a pointwise minimization
strategy.

(a) `(θ, δ(X)) = (1/2)(θ − δ(X))2 (squared-error loss)



(b) `(θ, δ(X)) = 1[θ 6= δ(X)] (zero-one loss)
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2. Conjugate Priors

In this question, we will investigate examples of conjugate priors : pairs of distributions
(for the likelihood and the prior) such that the prior and posterior are from the same
distribution, with possibly different parameters.

Recall that for observed data X, and prior distribution p(θ) on parameters θ, the poste-
rior probability distribution on θ, after seeing the data, is given by1

p(θ|x) =
p(x|θ) · p(θ)

p(x)

∝ p(x|θ) · p(θ)

where ∝ denotes “proportional to.” Note here that p(x) is a normalization constant
which allows the posterior distribution to sum to 1. However, it bears no influence on
the shape of the posterior distribution because it doesn’t contain θ. Therefore, we can
always work this proportionality to try to identify a posterior distribution.

(a) Beta and Binomial

Say you’ve observed a sequence of coin flips, X1, ..., Xn, all using the same coin,
which has some probability of landing heads, ph. Denote by H the total number of
heads:

H =
n∑
i=1

I{Xi = heads}

H follows a binomial distribution, with PDF

p(H = k) =

(
n

k

)
pkh(1− ph)n−k

We didn’t make this coin, it was given to us. We’re willing to place a prior dis-
tribution on the probability of it landing heads and we’ll use the beta distribution
to do so. The beta distribution is a suitable choice since it takes on values from
[0,1], which can be used to model probabilities. The beta distribution PDF is
parameterized by shape parameters α > 0 and β > 0, and is given by

f(z;α, β) =
(α + β − 1)!

(α− 1)!(β − 1)!
zα−1(1− z)β−1, 0 < z < 1

Show that the beta distribution is a conjugate prior for the binomial distribution.
What are the shape parameters for the posterior distribution?

1The prior distribution on the parameters is given by p(θ) and the likelihood p(x|θ).
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(b) Gamma and Exponential

A gamma distribution with parameters α, β has density function p(x) = βα

Γ(α)
xα−1e−βx

where Γ(α) is the gamma function (see https://en.wikipedia.org/wiki/Gamma_

distribution). Show that gamma distribution is a conjugate prior for exponential
distribution for multiple measurements, i.e. if we have samples X1, X2, · · · , Xn that
are mutually independent given λ, and each Xi|λ ∼ Exp(λ) and λ ∼ Gamma(α, β),
then λ|X1, X2, · · · , Xn ∼ Gamma(α∗, β∗) for some values α∗, β∗.
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3. Parameter Estimation: MLE vs. MAP

In this question, we will review two parameter estimation strategies called Maximum
Likelihood Estimation (MLE) and Maximum a Posteriori (MAP) Estimation. Both
strategies aim to provide an estimate for the value of a parameter of a distribution θ,
based on some data collected X.

Assuming we know the type of distribution from which our data X was drawn from, we
can estimate the distribution’s parameter θ with MLE in the following way:

θMLE = argmax
θ

p(X|θ)

In other words, MLE finds the most likely value of the fixed parameter θ, given the data.
Similarly, the MAP Estimate also takes into the account the likelihood of the data, given
the parameter θ. However, the MAP Estimate also incorporates a prior probability of
θ. It is given by:

θMAP = argmax
θ

p(X|θ)p(θ)

Therefore, the MAP Estimate finds the value of the random parameter θ which is most
probable, given the data and a prior belief.

(a) MLE for Binomial Distribution

Recall that the PMF of a Binomial random variable X is given by

P (X = k; pH) =

(
n

k

)
pkH(1− pH)n−k

Find the MLE for pH , the chance of success.
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(b) MAP for Binomial Distribution, with Beta Prior

Find the MAP Estimate for p, the chance of success. Compare your result to the
MLE found in Part (a).

(c) Connecting MAP and MLE

Compare the estimates of p in the Parts (a) and (b). What is the relationship
between the MLE and MAP Estimate of a parameter θ?
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