
DS 102 Data, Inference, and Decisions Spring 2020

Lecture 9: Bayesian Hierarchical Models
Lecturer: Jacob Steinhardt

In the last lecture, we introduced the idea of modeling hidden structure in our data, and saw
an example of a Gaussian mixture model (GMM) where, indeed, accounting for hidden structure
made modeling the remaining signal more intuitive. In this lecture, we will begin by revisiting this
motivating GMM example in more detail and defining latent variable models in more generality.
Then, we will introduce the Expectation-Maximization Algorithm as a way of performing inference
in such latent variable models.

9.1 Gaussian Mixture Models

We begin by recalling the idea of GMMs. Suppose we have a random variable Y with an unknown
distribution P(Y) as in Figure 9.1(a) that does not appear to be from any class of distributions
that we are familiar with. We would still like to come up with a model of the distribution that we
can interpret and sample form easily. One common approach, which is simple yet powerful enough
to represent complex distributions, is to model the overall distribution as a mixture of Gaussian as
illustrated in Figure 9.1(b).

(a) (b)

Figure 9.1: The probability density function of Y and the GMM that describes it.

We saw one situation where a GMM was appropriate in Example 8.6 in the previous lecture.

Example 8.6 revisited. Recall that this example is based on data collected by Galton including
the heights, xi, and genders, zi, of several individuals. We discussed how modeling the overall
distribution of heights as a simple Gaussian is not a very good fit to the observed height data.

9-1

Lecture 9: Bayesian Hierarchical Models 9-2

Instead, it is better to split on the variable of gender, and then the heights for each gender appear
to be roughly Gaussian. In mathematical notation, each person i has gender zi ∈ {0, 1} and a
height xi ∈ E, and we choose to model xi|zi ∼ N(µzi , σ

2). We may choose to model gender as
being drawn from some Bernoulli distribution with probability π, so P(zi) = πzi(1 − π)1−zi . Here,
µ0, µ1, and π are hyperparameters.

One useful way to write down statistical models is using a graphical model, which represents vari-
ables (and hyperparameters) as nodes, and direct relationships between variables (and hyperpa-
rameters) as arrows. It is also common to differentiate the nodes in a graphical model which cor-
respond to observed variables by shading. The graphical model representing the statistical model
described above for Example 8.6 is given in Figure 9.2.

x1 x2 . . . xn

z1 z2 . . . zn
µ0, µ1, σ

π

Figure 9.2: The graphical model describing the model for the Galton data in Example 8.6.

9.2 Latent Variable Models

In the Galton example, modeling the data with a GMM was straightforward since both height and
gender were observed for every individual in the dataset. There are situations where important
structure in the data is hidden, but we would still like to take advantage of that structure when we
perform statistical inferences. For example, if we did not know the genders of the individuals in
Example 8.6, we would still want to discover and leverage that structure in the data. We would
then call the heights, xi, observed variables and the variables representing gender, zi, latent or
hidden variables. This would make the model (e.g. Figure 9.2) one example of a latent variable
model.

The general form of a latent variable model is given in Figure 9.3.

Lecture 9: Bayesian Hierarchical Models 9-3

x

z

θ

Figure 9.3: General form of a latent variable model, where θ are hyperparameters, z are latent
variables, and x are observed variables.

An important special case of the latent variable model is the Bayesian hierarchical model, given
in Figure 9.4. In a Bayesian hierarchical model, observations are independent given the latent
variables, and each observed variable depends only on its corresponding latent variable and the
hyperparameters.

θ

x1 x2 . . . xn

z1 z2 . . . zn

Figure 9.4: General graphical model describing a Bayesian hierarchical model with hyperparame-
ters θ, latent variables zi, and observed variables xi.

Hidden Markov models (HMMs) are another example of a specific class of latent variable model.
One key difference between an HMM and a hierarchical Bayesian model is that in an HMM each
latent variable zi depends on the previous latent variable zi−1. These additional dependencies mean
that, for example, knowing information about x1 gives some information about x2. The following
example of an HMM further clarifies these properties.

Example 9.1. Suppose z1, z2, . . . zT give the true population of a type of fish in a lake over time. At
each time t, we randomly sample various locations in the lake and count the number of fish samples,
obtaining measurements x1, x2, . . . , xT . A reasonable model for this data: xt ∼ Poisson(λzt), zt+1 ∼
N(zt, σ

2), and z0 ∼ N(µ, σ2). Here, θ = (λ, µ, σ) are hyperparamters, the zt are latent variables,
and the xt are observed. The corresponding graphical model is:

Lecture 9: Bayesian Hierarchical Models 9-4

λ, µ, σ

x1 x2 . . . xn

z1 z2 . . . zn

We conclude this section by giving one example where Bayesian hierarchical modeling had a large,
real-world impact.

Example 9.2. Suppose we are in charge of 2016 election forecasting, and we would like to know
the fraction of people in each state who will vote for Clinton. Each of the 50 states has some
number of polls, and we assume each poll has a large enough sample size that we can treat its
error as Normally distributed (by the Central Limit Theorem). Thus, we could use a model where
we have an independent Gaussian margin of error in each state, sample the fraction of Clinton
supporters in each state accordingly, and look at how often Clinton wins to forecast the outcome
of the overall election. A model very similar to this predicted 90% for Clinton in 2016, but Trump
ended up winning the election.

What is wrong with this analysis that could have contributed to overestimating Clinton’s chances?
One important issue is that we have assumed independent margins of error, whereas in reality
pollster bias is likely to be consistent. Specifically, if a given pollster is biased in one direction in
one state, that pollster is likely to be biased the same way in another state. This means that errors
are actually highly correlated. If we model errors as independent when in fact they are correlated,
we will likely be overconfident, since under a model with independence assumptions it would be
very unlikely to be wrong in the same direction many times.

What could we do better? Say for each state there is a fraction of Clinton supporters, π1, π2, . . . , π50,
and that there are k pollsters, where the jth pollster has some bias ηj . Denote by xij the result of
pollster j in state i. One potential model which accounts for pollster bias is to suppose πi ∼
N(µ, σ21), ηj ∼ N(0, σ22), and xij ∼ N(πi + ηj , σ

2
ij). In practice, one would likely compute σij

based on each poll’s sample size (which may require some additional hyperparameters), but for the
purposes of this example we ignore these details. Here, θ = (µ, σ1, σ2) are the hyperparameters,
the πi and ηj are latent variables, and the xij are observed variables.

Lecture 9: Bayesian Hierarchical Models 9-5

µ, σ1, σ2

xij

πi ηj

Nate Silver from FiveThirtyEight used a model somewhat similar to this (but which incorporated
some additional factors beyond just pollster bias) to forecast the 2016 election.

9.3 Inference on Latent Variable Models

At this point, we have seen several example of useful latent variable models. How do we actually
perform inference in these models?

One potential method is to place a prior on the parameters and sample P(θ, z|x). We will talk more
about this approach in the next lecture. In this lecture, we will focus on a slightly different method
wherein we aim to maximize logP(x|θ) = log (

∑
z P(x, z|θ)). This approach can be thought of as

being “half Bayesian” since we effectively do maximum likelihood estimation over θ, but still treat
the latent z’s probabilistically.

As stated, this “half-Bayesian” method has a significant drawback in that we need to sum over all
the latent variables z. In Example 8.6, even if there are only 100 individuals in the Galton dataset,
there are 2100 ≈ 1030 possible ways to assign binary genders to each person. This sum over z is
thus too large to straightforwardly compute, even in this moderate case. We need a better approach
for solving this problem in an efficient manner. We will see that the Expectation-Maximization (EM)
algorithm addresses precisely this problem.

As further motivation for the EM algorithm, we will look more closely at posteriors for Bayesian hi-
erarchical models. Recall we have latent variables z1, z2, . . . , zn and observed variables x1, x2, . . . , xn.

First suppose we know all the hyperparameters θ. We claim that it is not too difficult to compute
the conditional distribution P(z1, . . . , zn|x1, . . . , xn, θ). In particular, since the zi are conditionally
independent and each xi only depends on its corresponding latent variable zi, the posterior factors
as the product of individual terms which each only depend on one latent variable:

P(z1, z2, . . . , zn|x1, x2, . . . , xn, θ) ∝ P(z1, z2, . . . , zn|θ)P(x1, x2, . . . , xn|z1, z2, . . . , zn, θ)

=

n∏
i=1

P(zi|θ)
n∏
i=1

P(xi|zi, θ).

Since the posterior decomposes, we can separately compute each independent posterior p(zi|xi, θ) ∝
p(zi|θ)p(xi|zi, θ), and then sample them independently. This is the reason why posteriors that de-

Lecture 9: Bayesian Hierarchical Models 9-6

compose like this are efficiently computable, and this decomposition will happen whenever we
have a hierarchical model. (As an aside, although it is slightly more complicated due to the time
dependence structure, there are also efficient algorithms for working with HMMs.)

Now, suppose instead that x and z were are both known. In this case, we would just like to do
maximum likelihood estimation on θ:

argmax
θ

logP(x, z|θ).

It turns out that we can also do this efficiently for hierarchical models.

To summarize, we have seen that if θ is known, it is often easy to to compute the posterior P(z|θ, x),
and if instead z is known, it is often easy to find argmaxθ logP(x, z|θ). The EM algorithm, defined
in the next section, combines these two pieces into a larger algorithm that solves our original
maximum likelihood problem:

argmax
θ

logP(x|θ).

9.4 Expectation-Maximization

The EM algorithm alternates between updating two variables, θ and q, where q is chosen to match
P(z|x, θ), and θ = argmaxθ Ez∼q(z)[logP(x, z|θ)]. Formally, initialize θ(1) arbitrarily. Then, for itera-
tions t = 1, 2, . . . , T :

1. q(t) ← P(z|x, θ(t))

2. θ(t+1) ← argmaxθ Ez∼q(t)(z)[logP(x, z|θ)]

Step 1 is known as the E-step, since it imputes a new distribution over z based on your current
estimates of the parameters and the observed data. Step 2 is called the M-step, since it updates the
parameters by maximizing the likelihood.

Remark 9.3. The EM algorithm can be shown to maximize a lower bound on the log-likelihood
of the data P(x|θ) at each iteration, meaning that as the algorithm runs we have more and more
confidence that the log-likelihood of the data is improving. This formalizes the relationship between
EM and our original problem of solving argmaxθ logP(x|θ).

9.5 EM for Gaussian

We will now show how the abstract EM algorithm works out in the Gaussian case. Specifically, we
will present a method of learning the parameters of a GMM, θi = (µi, σ

2
i), and πi, from observed

data x1, . . . , xn. We will suppose we know that there are d underlying Gaussians. (Note that
Example 8.6 about height and gender is a special case of this problem with d = 2 Gaussians.)

If we knew the value of zj for each xj we could write the likelihood of the data as:

Lecture 9: Bayesian Hierarchical Models 9-7

P(xj , zj |θ1, ..., θd, π1, ..., πd) = P(zj |π1, ..., πd)P(xj |zj , θ1, ..., θd) =
d∏
i=1

(πiN (xj ; θi))
I(zj=i)

where N (xj ; θi) is shorthand for the Gaussian density

1√
2πσ2i

exp

(
− 1

2σ2i
(xj − µi)2

)
.

The log likelihood of all of the data would therefore be given by:

`(x, zj ; θ1, ..., θd, π1, ..., πd) =

n∑
j=1

d∑
i=1

I(zj = i)(log(πi) + log(N (xj ;µi, σ
2
i)).

which we could maximize over all θ1, ..., θd and π1, ..., πd.

On the other hand, if we knew all the values of θ1, ..., θd and π1, ..., πd we could find the posterior
distribution over zj for each data point xj . This posterior is given by:

P(zj = i|xj) =
πiN (xj ;µi, σ

2
i)∑d

k=1 πkN (xj ;µk, σ
2
k)
.

In this setting, the EM algorithm will proceed as follows:

1. Randomly initialize θi and πi.

2. Given fixed θi and πi, for each data point xj approximate the probability that zj comes from
Gaussian i, denoted qj(i) = P(zj = i|xj).

3. Given fixed distributions qj find the values of θi and πi that maximize the expected likelihood
of the data (over the distributions qj(i)):

(π∗, θ∗) = argmax
π1,...,πd,θ1,...,θd

Eq[`(x; θ1, ..., θn)]

Since E[I(zj = i)] = P(zj = i|xi) = qj(i), this simplifies to:

(π∗, θ∗) = argmax
π1,...,πd,θ1,...,θd

n∑
j=1

d∑
i=1

qj(i)(log(πi) + log(N (xj ;µi, σ
2
i)).

4. Iterate between the two sub-problems until convergence.

We now outline the EM algorithm with unknown µi, σ2i , πi for a mixture of d Gaussians given
x1, ...xn.

Lecture 9: Bayesian Hierarchical Models 9-8

Algorithm 1 Expectation-Maximization Algorithm for Gaussian Mixture Models.
Input: Data: x1, ..., xn, Number of Gaussians in the mixture d, number of iterations T
Output: (πi, µi, σ2i) for i = 1, ..., d.
Randomly Initialize (π

(0)
i , µ

(0)
i , σ

(0)
i) for t = 1 to T do

E-Step: for j = 1 to n do
for i = 1 to d do

qj(i)←
π
(t−1)
i N(xj ;µ

(t−1)
i ,(σ

(t−1)
i)2)∑d

k=1 π
(t−1)
k N(xj ;µ

(t−1)
k ,(σ

(t−1)
k)2)

end
end
M-Step: for i = 1 to d do

N
(t)
i ←

∑n
j=1 qj(i).

µ
(t)
i ←

1

N
(t)
i

∑n
j=1 qj(i)xj .

σ
(t)
i ←

1

N
(t)
i

∑n
j=1 qj(i)(xj − µ

(t)
i)2.

π
(t)
i ←

N
(t)
i
n .

end
end

Note that the update for µi and σ2i are both the maximizers of the expected likelihood using typical
maximum likelihood approaches – in particular, one can use the useful result for maximum likeli-
hood estimation in exponential families from the next section. The update for πi, however, requires
maximizing the expected likelihood while constraining

∑d
i=1 πi = 1. This derivation requires using

solving a constrained optimization problem which is outside the scope of this class.

Remark 9.4. Note that the EM algorithm can be very sensitive to the initialization, and is not
guaranteed to converge to the same solution from any initialization.

9.6 Maximum Likelihood Estimation in Exponential Families

Here, we discuss a useful result for quickly computing MLEs for many common distribution families.
Specifically, the result applies to all exponential family distributions, which are distributions p
where

p(x|θ) ∝ f(x) exp(〈θ, g(x)〉).

We call θ the natural parameter and g(x) the sufficient statistic.

Several common distribution families are exponential families. For example, for Gaussians we can

Lecture 9: Bayesian Hierarchical Models 9-9

write

p(x|θ) ∝ exp

(
− 1

2σ2
(x− µ)2

)
∝ exp

(
− 1

2σ2
x2 +

µ

σ2
x

)
which shows that Gaussians are an exponential family with θ =

(µ
σ2 ,− 1

2σ2

)
and g(x) = (x, x2).

Bernoulli distributions are also an exponential family with θ = log(π) − log(1 − π) and g(x) = x
since

p(x|π) = πx(1− π)1−x

= exp (x log π + (1− x) log(1− π))
∝ exp (x(log π − log(1− π))) .

It turns out that the Poisson, beta, and exponential distributions are also all exponential families
with g(x) = x, g(x) = (log x, log(1−x)), and g(x) = x, respectively. In general, the Wikipedia page
has a comprehensive list of exponential families with their associated sufficient statistics, g(x).

It turns out that computing MLE solutions for exponential families is particularly straightforward.
This is characterized by the following theorem:

Theorem 9.5. Suppose that p(x|θ) is an exponential family with sufficient statistic g(x). Then, for
any q(x), the solution to

argmax
θ

Ex∼q[log p(x|θ)]

is the parameter θ∗ such that
Ex∼q[g(x)] = Ex∼p(x|θ∗)[g(x)].

This theorem says that, when performing maximum likelihood estimation in exponential families,
we want to choose the parameters that match the observed statistics. For example, since g(x) =
(x, x2) for Gaussians, we want to choose µ∗ and σ∗ to match the empirical mean and standard
deviation.

Note that we saw a result similar to Theorem 9.5 in the context of logistic regression. In particular,
in Lecture 7 we saw that the maximum likelihood paramteres for logistic regression were also
the parameters that matched the predicted and observed statistics. It turns out that this moment
matching result for logistic regression arises from a generalization of Theorem 9.5; the underlying
distribution in logistic regression is a something called a conditional exponential family, and a result
similar to Theorem 9.5 is also true for conditional exponential families.

https://en.wikipedia.org/wiki/Exponential_family

	Gaussian Mixture Models
	Latent Variable Models
	Inference on Latent Variable Models
	Expectation-Maximization
	EM for Gaussian
	Maximum Likelihood Estimation in Exponential Families

