DS 102 Data, Inference, and Decisions Spring 2020

Lecture 5: Fairness in Decision-making

Lecturer: Moritz Hardt

Today, we’ll consider what it means for decisions rule to avoid discrimination based on features
or information that we consider protected or sensitive. In practice, such fairness ideas are nearly
inevitable.

5.1 What is Fairness?

Fairness in decision-making is a broad topic which draws upon numerous fields. We will study it
in a simple statistical setting. Although this will give only a small glimpse into the subject, we will
see that some deep, interesting problems still arise. In particular, fairness is not a purely technical
problem, and we will see the need to consider larger implications.

In our setting, we have features X (the data, all of the information collected about each individual),
a target variable Y (in our previous notation, this was our parameter of interest #), and a decision
rule §(X). Typically, we will think of ¢ as a threshold rule §(X) = 1{R(X) > t} which performs
binary classification based on some score R(X).

Example 5.1. R(X) could be:

e a likelihood ratio (in Neyman-Pearson framework / Likelihood Ratio Test)
e conditional expectation (which we was the Bayes optimal score under the squared loss)

e some score which is learned from the data (which will be explored in more detail in upcoming
lectures)

One important complication in many practical settings: the features X may contain some sensitive
A. We assume that A is a discrete random variable which partitions the data X into groups.

Example 5.2. A could be one of the legally recognized “protected classes” under U.S. law, such
as: race, sex, religion, age, disability status, and genetic information. (However, there is ongoing
debate about what qualifies as protected, even amongst these classes. For example, should “sex”
extend to sexual orientation?)

Such protected features might arise in “regulated domains” which, under U.S. law, include: credit,
education, employment, hiring, and housing. This also extends to marketing and advertising (in-
cluding ranking of ads or of one’s personal timeline/newsfeed), which makes questions regarding
sensitive data and fairness in machine learning relevant to work done by almost every major tech
company.
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The key question we would like to address is, how do we avoid making decisions that discriminate
based on these sensitive attributes?

5.2 Fairness through Unawareness

Can we avoid difficult questions surrounding fairness in decision-making by simply ignoring all
sensitive attributes in the data?

It turns out that simply removing anything that looks like a sensitive category from the data is not
an adequate solution. Some of the remaining features (or some combination of them) might be
proxies for sensitive attributes.

Example 5.3. Zip code may function as a proxy for race.

For example, in the U.S., redlining maps were once used to deny financial services to individuals
from certain areas. While information about race was never explicitly used in the decision-making
process, redlined areas were often those with a high proportion of minority residents. Thus, dis-
crimination based on race still effectively occurred. However, similar patterns of discrimination can
still arise even unintentionally. More recently, maps of Amazon same-day delivery coverage showed
that same-day delivery had lowest availability in predominantly Black areas. In this case, decisions
about same-day delivery service were likely made based on predictions of the number of same-day
purchases, so the route to discrimination may have been through socioeconomic status.

Fairness through unawareness fails; one will still run into issues regarding fairness and discrimina-
tion in machine learning by trying to ignore these problems. Data science and machine learning is
excellent at discovering proxy variables, so if a sensitive attribute gives a boost in predictive accu-
racy, machine learning will likely discover it. “We didn’t look at that” is never a valid argument to
defend a model which leads to discrimination in practice.

What would be better than unawareness? In the following sections, we will examine three common
statistical criteria that help us answer the question “equality of what?” when trying to design fair
decision rules. In particular, discuss:

e equalizing positive rates (acceptance rates)
e equalizing error rates (false positive and false negative rates)

e equalizing false discovery and false omission rates

5.3 Equalizing positive rates

When we equalize positive rates, we require that for any two groups a and b, the probability of
making a positive call in group « is the same as the probability of making a positive call in group b:

P(3(X) = 1|A = a) = P(5(X) = 1|4 = b).


https://en.wikipedia.org/wiki/Redlining
https://www.bloomberg.com/graphics/2016-amazon-same-day/
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For more complex settings (for example, for multi-class classication or regression), the generaliza-
tion of this rule is to require that §(X) is independent of A.

Does enforcing equal positive rates solve all issues of fairness? It turns out that one can come up
with decision rules that are indisputably unfair but still satisfy the criterion of equal positive rates.

Example 5.4. Suppose there are two groups, A = a and A = b. Further suppose we make good,
informed decisions in group a, but random decision in the other group, b. As long as we equalize
the positive rate (e.g. in each group accept 20% of individuals), this overall decision rule satisfies
the equal positive rate condition. However, in group a the error rates are probably quite good —
that is, we are likely not making many false positives. In group b, even though the overall positive
rate is what we want to satisfy the fairness criterion, the error rates will be quite poor.

Even when we are not adversarially designing unfair decision rules, decision rules which satisfy the
equal positive rate condition may be unfair. For example, we may have less or lower quality data
for one group.

Example 5.5. The Framingham risk score for coronary heart disease was created on a cohort of
white men, then used for other patients. It performed well on other white men, but led to many
false positives for other types of patients.

Equalizing positive rates cannot solve all issues of fairness because it is not just the number of pos-
itive calls that matters. In particular, true positives and false positives are fundamentally different,
and, intuitively, one should not be able to match a true positive in one group with a false positive
in another.

5.4 Equalizing error rates
Instead of equalizing the overall rates of positives, we can consider requiring equal false positive
rates and false negative rates for any two groups:

P(5(X)=1]Y =0,A=a) =P@((X) =1]Y =0,4A =b),
P(5(X)=0]Y =1,A=a) =P@((X)=0]Y =1,4 =1b).

Recall that these error rates correspond to the “row-wise” rates in the confusion matrix 5.1

decision
null (0) | non-null (1)
reality null n0o no1 1o + Mo1
non-null 10 ni1 nio + N1
noo +n1o | no1 + N1 N

Table 5.1: Different ground truth and decision relationships in multiple testing.

Similarly as for the positive rate criterion, there is a generalization of this rule: require that §(X) is
independent of A conditional on Y.


https://en.wikipedia.org/wiki/Framingham_Risk_Score
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Error rate parity is a post-hoc criterion: at decision time, you don’t know who is truly a posi-
tive/negative instance. In hindsight, somebody can collect a group of positive instances and a
group of negative instances and check how well they were classified. Group differences in this kind
of post-hoc “audit” often strike people as unfair.

This error rate parity condition has a nice interpretation in terms of the ROC curve. Suppose §(X)
is a threshold rule. It is possible to produce an ROC curve for each group, and figure out how to
choose a threshold to satisfy error rate parity by inspection. In particular, error rate parity implies
that the ROC curve of score conditional on group must lie under all individual curves.
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Figure 5.1: Error rate parity implies that ROC curve of score conditional on group must be under
all curves.

One key criticism of this approach: in order to equalize the error rates for all groups, it will be
necessary to make the predictions worse for some of the groups. Arguably, rather than worsening
the predictions for some groups, it would be better to think critically about why the error rates are
different between groups and try to address some of the underlying causes.

5.5 Equalizing column-wise rates

We could consider the column-wise rates in the confusion matrix 5.1 instead of the row-wise rates,
and create analogous fairness criteria for false omission and false discovery rate. There is nothing
wrong with this approach per se, but people often consider a slightly different quantity called
calibration instead.

Suppose your decision is a threshold rule §(X) = 1{R(X) > t}. Calibration means P(Y = 1|R =
r) = r. Among all the examples that get score 7, on average an r proportion of them should actually
be positive. Calibration by group would be P(Y = 1|R=r,A=a) =r.

Calibration is a fairly natural notion to consider for fairness because it is an a priori guarantee. The
decision-maker sees the score R(X) = r at decision time, and knows based on this score what the
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frequency of positive outcomes is on average.

Example 5.6. A doctor uses a scoring rule for the current patient and sees a score of R(X) = 0.6.
He know that, on average among all patients with that score, 60% have heart failure. Note that
this does not guarantee that the current individual has a 60% chance of heart failure, but still gives
interpretable information at decision time.

5.6 Incompatibility results

At this point we have seen three different fairness criteria: equal acceptance rate, equal error rate,
and calibration by group. Each criterion has different strengths and weaknesses, and each makes a
different assumption about what it means to be “fair” or “just.” Can we have them all?

A collection of results known as “incompatibility results” prove that these three fairness criteria are
mutually exclusive. Thus, we cannot simultaneously guarantee that even two of the three criteria
are satisfied at once. For more information or further reading about these different criteria and the
trade-offs between them, see chapter 2 of the Fairness and machine learning textbook.

The fact that error parity and calibration are mutually exclusive has been most significant in terms
of public debate.

Theorem 5.7. Assume the groups have different base rates (P(Y = 1|A = a) # P(Y = 1|A = b)) and
d(X) has nongzero error rates. Then, if error rate parity holds, group calibration cannot hold.

This trade-off was studied closely in part because of an investigative article on the COMPAS risk
score, which is used by many jurisdictions in the U.S. to assess risk of recidivism. Judges can use
the score in part to detain defendants. ProPublica found that Black defendants face higher false
positive rate — that is, among Black individuals who did not recidivate, more were labeled “high”
risk than in the group of White defendants that did not recidivate. COMPAS makers Northpointe
rebutted this criticism by arguing that the scores are calibrated by group and Black defendants have
a higher recidivism rate. Hence, this trade-off is unavoidable.

Although incompatibility results meant that Northpointe was eventually let off the hook in this case,
the situation still seems unsatisfying. When addressing issues of fairness, it is important to consider
whether a non-technical solution would be better than applying these three statistical criteria.

5.7 Incentives

One further criticism of the fairness criteria we have seen thusfar is that they do not blatantly rule
out unfair practices — in fact, forcing a decision-maker to satisfy them can lead to bad incentives.

Example 5.8. Suppose we know the true probabilities of recidivism for several individuals, and
choose to detain everyone who has a probability above 50%. As illustrated in figure 5.2, if one
group has a lower average probability of recidivism than another, this rule will lead to very different


https://fairmlbook.org/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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detention rates and false positive rates for the two groups. As per figure 5.3, if we are forced to
equalize false positive rates for the two groups, we may be incentivized to arrest more low risk
individuals in the group that had higher average probability of recidivism. Since these individuals
are “low risk”, they will neither be detained nor recidivate. This is clearly a harmful practice in
reality, but nonetheless has the desired effect of equalizing error rates.
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Figure 5.2: A simple threshold rule that detains all individuals with probability of recidivism above
50% leads to higher detention and false positive rates for the group with higher average probability
of recidivism.
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Figure 5.3: Using the same threshold rule as figure 5.2 but arresting more “low risk” individuals in
the orange group (which had higher average probability of recidivism) has the effect of equalizing
error rates.

Calibration faces similar issues with bad incentives. For example, one could replace the scores of
a subgroup of individuals with the average score of that subgroup in order to satisfy calibration
requirements, but this may lead to a decision rule that does not treat each individual fairly. See this
2017 paper by Corbett-Davies et. al for more details about these examples.

5.8 Outlook on fairness

What conclusions can we draw about fairness in decision-making from this discussion? First, fair-
ness through unawareness fails. Working in data science or machine learning, one will inevitably


https://arxiv.org/abs/1701.08230
https://arxiv.org/abs/1701.08230
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run into issues of fairness, and it will be necessary to think carefully about them and confront them
head-on.

Although better than unawareness, statistical fairness criteria on their own cannot be a “proof
of fairness.” They can provide a starting point for thinking about issues of fairness and finding
useful solutions. In particular, they can help surface important normative questions about decision-
making, as well as trade-offs and tensions between different potential interpretations of fairness.

For a deeper discussion of these and related ideas, see the Fairness and machine learning textbook
by Barocas, Hardt, & Narayanan.


https://fairmlbook.org/
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