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Jacob Steinhardt

September 24, 2020

J. Steinhardt MCMC September 24, 2020 1/13



Last Time

@ Rejection sampling

@ Markov chain review
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Last Time

@ Rejection sampling

@ Markov chain review

This time: Markov chain Monte Carlo
@ Gibbs sampling
@ Metropolis-Hastings
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Gibbs Sampling: Motivation

@ Have an arbitrary distribution p(xi, ..., x,) that we want to sample from
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Gibbs Sampling: Motivation

@ Have an arbitrary distribution p(xi, ..., x,) that we want to sample from

@ Current tool: rejection sampling
e Proposal distribution g(xi, ..., xp) for all x; at once
e Issue: too slow (typically exponentially small acceptance rate in n)
e E.g. evenif x; are independent, and g(x;)/p(x;) < 1.1, need 1.1" tries
(~2.5-10*" for n=1000)
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Gibbs Sampling: Motivation

@ Have an arbitrary distribution p(xi, ..., x,) that we want to sample from

@ Current tool: rejection sampling

e Proposal distribution g(xi, ..., xp) for all x; at once

e Issue: too slow (typically exponentially small acceptance rate in n)

e E.g. evenif x; are independent, and g(x;)/p(x;) < 1.1, need 1.1" tries
(~2.5-10*" for n=1000)

@ Idea behind Gibbs sampling: change one variable at a time (Markov
chain)
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Gibbs Sampling: Algorithm

Algorithm:
@ Initialize (x1,...,X,) arbitrarily
@ Repeat:

e Pick i (randomly or sequentially)
e Re-sample x; from p(x; | X1,...,Xi—1,Xi+1,---,Xn) (often denote p(x; | x_;))
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Gibbs Sampling: Algorithm

Algorithm:
@ Initialize (x1,...,X,) arbitrarily
@ Repeat:

e Pick i (randomly or sequentially)
e Re-sample x; from p(x; | X1,...,Xi—1,Xi+1,---,Xn) (often denote p(x; | x_;))

Defines a Markov chain, and can prove that the stationary distribution is
p(X1 g :Xn) (”)
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Gibbs Sampling: Unit Circle Example
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Gibbs Sampling for Hierarchical Models

Recall hierarchical models (e.g. height and gender example)
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Gibbs Sampling for Hierarchical Models

Recall hierarchical models (e.g. height and gender example)

Suppose we want to do Gibbs sampling for this model
@ Sample z;: p(z; | x;,0) = p(z; | 0) p(x; | zi)
N ——

prior likelihood
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Gibbs Sampling for Hierarchical Models

Recall hierarchical models (e.g. height and gender example)

Suppose we want to do Gibbs sampling for this model
@ Sample z;: p(z; | X;,0) o< p(z; | 0) p(xi | zi)
N ——
prior likelihood

@ Sample 6 (e.g. Uy for height/gender model):
P(lo | Z1:n, X1:) o< p(tho) - ] exp(—(xi— 1o)?/26?)
N 0

v f:Zi:
prior

likelihood
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Proof of stationary distribution

Assuming chain is ergodic, just need to show stationary distribution is
preserved.

Suppose x ~ p and x’ is obtained from x by Gibbs sampling update.
Want to show that x’ is also distributed according to p.

If index i is updated, then x’ = (x1,...,Xi—1,X/, Xi+1,...), where
X~ p(Xi | Xty Xiot, Xi g, 2)-

Indices # i distributed according to p, and x/ | x;éi is as well, so x’ follows p.

J. Steinhardt MCMC September 24, 2020 7/13



Ergodicity: counterexample

Suppose that x1, x> € {0,1} with following probability table:

0 1
0105 |00
1100105

What will Gibbs sampling do?
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Gibbs Sampling: Summary

Repeatedly sample from p(x; | x_;)
Creates Markov chain whose stationary distribution is p(xi, ..., Xn)

o
o
@ Flexible: conditional p(x; | x_;) one-dimensional, easy to sample from
@ Don'’t need to “get lucky” with graphical model structure

°

Extensions, e.g. block Gibbs sampling
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Metropolis-Hastings: Idea

@ Gibbs sampling: one possible Markov chain
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@ Is there a more general strategy?
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Metropolis-Hastings: Idea

@ Gibbs sampling: one possible Markov chain
@ Is there a more general strategy?
@ Yes! Combine with idea of rejection sampling

J. Steinhardt MCMC September 24, 2020 10/13



Metropolis-Hastings: Idea

@ Gibbs sampling: one possible Markov chain
@ Is there a more general strategy?
@ Yes! Combine with idea of rejection sampling

@ Given any “proposed Markov chain” g(x™" | x°'), will combine with an
accept/reject step to create new Markov chain with the correct stationary
distribution
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Metropolis-Hastings: Algorithm

Proposal distribution: g(x™" | x°1d)

Given x°ld:

@ Sample x™V from g

@ With probability , accept (replace x°!4 with
XHCW)

@ Otherwise, reject (keep x°'9)
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Metropolis-Hastings: Algorithm

Proposal distribution: g(x™" | x°1d)

Given x°ld:

@ Sample x™V from g

@ With probability

xhew

Xnew )

@ Otherwise, reject (keep x°'9)
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Metropolis-Hastings: Algorithm

Proposal distribution: g(x™" | x°1d)

Given x°ld:

@ Sample x™V from g

new old xhew

@ With probability p(x") g(x*|

P(e) (¥ %)
XnCW)

@ Otherwise, reject (keep x°'9)

, accept (replace x°!4 with
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Metropolis-Hastings: Algorithm

Proposal distribution: g(x™" | x°1d)

Given x°ld:

@ Sample x™V from g

o With probability | min (1 ”(X"W)M) , accept (replace x° with

) p(Xold) q(xnew|xold)
XI’lCW)

@ Otherwise, reject (keep x°'9)
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Metropolis-Hastings: Algorithm

Proposal distribution: g(x™" | x°1d)

Given x°ld:

@ Sample x™V from g

o With probability | min (1 ”(X"W)M) , accept (replace x° with

) p(Xold) q(xnew|xold)
Xl’lCW)

@ Otherwise, reject (keep x°'9)

Gibbs sampling: special choice of g where we always accept!
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Proof sketch: Detailed balance

Can show that if an ergodic Markov chain satisfies
P(x)A(X" | x) = p(x")A(x | x') for all x, x’, then it has stationary distribution p.

This condition is called detailed balance.

Metropolis-Hastings sets probabilities so that detailed balance holds.
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Mixing time

Performance of MCMC algorithms governed by mixing time: how long it takes
to get close to stationary distribution.

Mixing time can vary dramatically, from nearly linear to exponential in number
of variables.

[mixing time examples: on board]
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