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Last Time

Bayesian Inference

Setup

Conjugate priors

Computing posteriors
Inference

Full posterior
MAP, LMSE

This time: more complex models, and a (visual) language for describing them
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Recall: Heights and Gender

[Jupyter demo]
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Heights and Gender: Bayesian Model

Person i : gender zi ∈ {0,1}, height xi ∈ R

xi | zi ∼ N(µzi ,σ
2), i.e. p(xi | zi) ∝ exp

(
− 1

2σ2 (xi −µzi )
2
)

p(zi) = πzi (1−π)1−zi (Bernoulli with probability π)

“Hyperparameters”: µ0,µ1,σ
2,π

[draw graphical model]
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Latent Variable Model: General Form

θ

z

x

hyperparameters (µ1,µ2,σ ,π)

latent structure (gender)

observed output (height)
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Special Case: Hierarchical Model

θ

z1 z2 · · · zn

x1 x2 · · · xn

“Bayesian hierarchical model”
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Example: COVID Meta-Analysis

[on board]

J. Steinhardt Graphical Models September 17, 2020 7 / 15



Example: COVID Meta-Analysis

Take-away: hierarchical models help model heterogeneity while pooling
statistical strength
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Another Example: HMMs

Temperature from ice cores

Ice cores collected at times 1, . . . ,T

Observe 18O and deuterium concentrations at each time (Ot ,Dt)

Known (noisy) relationship with temperature Ht : Ot ≈ aHt +b, and
Dt ≈ cHt +d

h1 h2 · · · hT

o1,d1 o2,d2 · · · oT ,dT

Model:
dt ∼ N(cht +d ,σ2

d ), ht+1 ∼ N(ht ,σ
2
h ), h0 ∼ N(µ,σ2

0 )
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Checking the assumptions

Take-away: Time series models can pool across time, but need to get
dynamics right!
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Interlude: Factorization

Graphical models directly relate to algebraic structure of probability
distribution

HMM:

p(z1,z2,z3,x1,x2,x3) =p(z1)p(z2 | z1)p(z3 | z2)

×p(x1 | z1)p(x2 | z2)p(x3 | z3)

z1 z2 zn

x1 x2 xn

Parents in graphical model↔ what to condition on in factorization
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Final Example: Election Forecasting

2016 election forecasting

Want to know fraction of people who will vote for Clinton in each state

Each of 50 states has some number of polls

Each poll has large enough sample size that we can treat error as
normal-distributed

So have independent Gaussian margin of error in each state

Sample true fraction of Clinton supporters for each state, look at how
often Clinton wins

Something like this predicted 90% Clinton in 2016, but Trump won.

What is wrong with this analysis? [At least 2 things...]
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Election Forecasting Model

[on board]

Next: efficient algorithms
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Motivation: Exponential Sums

How to do inference in latent variable models?

Method 1: place prior on θ , sample p(θ ,z | x) (next time)

Method 2: maximize logp(x | θ) = log
(

∑z p(x ,z | θ)
)

“half-Bayesian”

How many possibilities for z? Height/gender example:

100 people, genders z1, . . . ,z100

2100 ≈ 1030 possibilities

Need a better strategy! (Sampling: next time)
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Recap

Many problems have unobserved structure / dependencies (hierarchical
models, hidden Markov models, ...)

Graphical models: flexible visual language for specifying this structure

Failing to model these can lead to wrong/overconfident predictions
(heterogeneity, time dynamics, independence)

Latent variables =⇒ exponential blow-up =⇒ need good algorithms!
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