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Motivation

Recall linear regression / classification setup:

L(β ) =
1
n

n

∑
i=1

(y(i)−β
>x(i))2 (linear)

L(β ) =
1
n

n

∑
i=1
− logσ((−1)y(i)

β
>x(i)) (logistic)

What if we want to learn more complex functions?
(E.g. true function not linear in x)
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Motivation

Recall linear regression / classification setup:

L(β ) =
1
n

n

∑
i=1

(y(i)−β
>

φ(x(i)))2 (linear)

L(β ) =
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n

n

∑
i=1
− logσ((−1)y(i)

β
>

φ(x(i))) (logistic)
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Non-linear Examples

φ(x) = x1x2, φ(x) = |x2
1 + x2

2 −0.6|

This gets tedious.

What if we can’t think of good features ahead of time?
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Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don’t need
to hand-engineer features.

Many approaches:

Random features

Neural networks

Kernels

Decision trees

Focus on first two for this lecture
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Random features

Input x ∈ Rd , but can’t think of good features function φ(x)

Solution: make φ random but high-dimensional:

φ(x) = sign(Mx +b), (1)

where M ∈ Rd×k and b ∈ Rk are random vectors (chosen once at beginning).

Other features work too, e.g. cos(Mx +b), etc. Key points are randomness
(good variation) and high dimensionality (usually k > d).
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Random features: Jupyter demo

[switch to notebook]
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Learned features

Random features can be too crude

What if features themselves are learnable?

Two-layer neural network:

φ(x) = σ(M1x +b1),

p(y | x) = σ(M2σ(M1x +b1)+b2).

Modern ML: iterate to many layers (and use different non-linearity σ ,
convolutional structure, etc.)

J. Steinhardt Nonparametrics November 17, 2020 7 / 14



Learned features

Random features can be too crude

What if features themselves are learnable?

Two-layer neural network:

φ(x) = σ(M1x +b1),

p(y | x) = σ(M2σ(M1x +b1)+b2).

Modern ML: iterate to many layers (and use different non-linearity σ ,
convolutional structure, etc.)

J. Steinhardt Nonparametrics November 17, 2020 7 / 14



Learned features

Random features can be too crude

What if features themselves are learnable?

Two-layer neural network:

φ(x) = σ(M1x +b1),

p(y | x) = σ(M2σ(M1x +b1)+b2).

Modern ML: iterate to many layers (and use different non-linearity σ ,
convolutional structure, etc.)

J. Steinhardt Nonparametrics November 17, 2020 7 / 14



Learned features: Jupyter demo

[switch to notebook]
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Fitting a neural network model

How do we actually fit M and b?

Recall stochastic gradient descent: update parameters w = (M1,M2,b1,b2) by
following gradient of the loss ∇L(w):

w ′← w−η∇L(w)

How do we compute ∇L(w)?
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Computing the gradient

[on board]
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Backpropagation and autodiffentiation

Given any “computation graph”, we can write down derivatives recursively
using the chain rule

Then solve using dynamic programming!

This is called backpropagation or autodifferentiation, key idea in Pytorch
and other libraries

Will build this up starting with simple examples
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Backprop: simple example

[on board: (a+b)c2 example]
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Backprop: two-layer network

[on board]

J. Steinhardt Nonparametrics November 17, 2020 13 / 14



Backprop in pytorch

[Jupyter demo]
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