
DS 102 Lecture 20: Matching Markets

Lecturer: Michael I. Jordan

November 3, 2020

1 Two-Sided Markets

We consider situations where we want to model interactions between two sets
of entities. One prominent example occurs in kidney exchange programs, where
kidney donors and receivers need to be matched based on factors such as blood
type compatibility. This is an example of a matching market, where the
needs of one party need to be matched to the services provided by another
party, typically in a way that accounts for the preferences of both sides. The
platforms provided by Uber and Lyft are another example, in which passengers
need to be matched to drivers. Another important example is the process of
matching medical school students to hospitals, where both sides of the markets
have preferences: each student has preferences over the hospitals, based on
their interests, and each hospital has preferences over the students, based on
their needs.

In this lecture, we’ll use the running example of matching bands to drum-
mers. Consider a set of m bands and a setv of n drummers. Every band wants a
drummer, and every drummer wants to belong to a band. Each band has pref-
erences over the different drummers, and each drummer has preferences over the
different bands. We model these preferences as a total order for each drummer
and each band, and we assume that these preferences are known and fixed. An
example of the preferences of a set of bands and a set of drummers is given in
Fig. 1.

Figure 1: Example preferences among m = 3 bands and n = 3 drummers. For
example, band b1 prefers drummer d1 over drummer d3, and prefers drummer
d3 (and d1) over drummer d2.

1



Given an arbitrary preferences, is it possible to find a matching
where everyone is satisfied (in some sense)? We can also expanding out
thinking to consider situations where either side doesn’t know their preferences
a priori, and has to learn them on the fly. This is a more modern take on the
problem and an open area of research, and connects back to ideas from our unit
on bandits.

2 Stable Matching Problem

To formalize the problem we’d like to solve, we’ll start with some definitions.
Definition: A matching M is a set of pairs (b, d) such that each band b

appears in at most one pair in M , and each drummer d appears in at most one
pair M .

Another way to say this is that a matching is a one-to-one mapping between
a subset of bands to a subset of drummers. By convention, if either a band
or a drummer is not matched with anyone, they are considered matched with
themselves. We assume that everyone prefers to be matched to someone else to
being matched to themselves.

2.1 Stability

To specify what we’re looking for in a “good” matching, intuitively, if a matching
is satisfactory to everyone then it should obey some sort of equilibrium. To
make this notion precise, we define a blocking pair and unstable and stable
matchings.

Definition: Given a particular matching M , a blocking pair (b, d) is a pair
such that b prefers d to its current match in M and d prefers b to its current
match in M .

Definition: If a matching M has a blocking pair, it is unstable. Else, it is
a stable matching.

This concept of stability is a local one, not a global one. That is, to be stable,
a matching does not have to be compared to all possible matchings that could
exist. It simply cannot contain a pair of a band and a drummer who would
both prefer to be matched to each other than their current matches. Note that
in a stable matching, any band or drummer can still have envy (preferring to be
matched to a different drummer or band, respectively), as long as that envy is
not “reciprocal”. This definition of stability characterizes a sort of equilibrium,
because there is no unmatched pair of a band and a drummer who would both
benefit by being matched to each other instead.

3 Gale-Shapley Algorithm

Given arbitrary preferences, can we always find a stable matching? The answer
is yes! In 1962, David Gale and Lloyd Shapley demonstrated that a simple, in-
tuitive algorithm will always achieve this. The algorithm considers two sides of

2



the market, proposers and proposees. A key aspect of the algorithm is that pro-
posers and proposees have different roles; the former actively proposes matches,
while the latter passively accepts or rejects them. The algorithm can be applied
with either group in either role in either way. For example, we could run it
with the bands acting as proposers and the drummers acting as proposees (as
we assume throughout today’s lecture), or vice versa.

3.1 Algorithm

• Initialize M to an empty matching.

• While some band b is unmatched and hasn’t proposed to every drummer:

– Let d denote b’s most preferred drummer, among all drummers to
whom b has not yet proposed.

– If d is unmatched, M ←M ∪ (b, d).

– Else if d prefers b to b′ (d’s current match), M ← (M \ (b′, d))∪ (b, d).

– Else d rejects b, and M is unchanged.

At some point this algorithm will terminate, because there are only a finite
number mn of possible proposals made by a band to a drummer, and each of
these proposals can only be made once. After this finite number of proposals
is made, then the algorithm terminates. Until it terminates, any matches made
(i.e., proposals by a band that are accepted by a drummer) are tentative, and
could change in future rounds if the drummer receives a proposal from a band
they prefer more. In fact, this is a key observation about the algorithm: a
drummer’s match can only improve as the algorithm proceeds.

3.2 Proof that Gale-Shapley Produces a Stable Matching

We can prove that the Gale-Shapley algorithm creates a matching M with no
blocking pairs. To do this, we will show that for any pair (b, d) that is not a
match in M , (b, d) is not a blocking pair. There are two cases to consider:

Case 1 : If b never proposed to d during the execution of the algorithm, then
we know that b prefers its match in M over d, because b proposed in order of its
preferences. That is, the algorithm must have stopped before b got to proposing
to d. So (b, d) cannot be a blocking pair, since b does not prefer d over its current
match in M .

Case 2 : If b did propose to d, then we know that d prefers its match in
M over b, because (as observed above) the drummer d can only improve their
match when they accept new proposals throughout the course of the algorithm.
So (b, d) cannot be a blocking pair, since d does not prefer b over its current
match in M .

We have therefore shown that any pair that is not a match in M cannot be
blocking. Therefore, the matching M produced by the Gale-Shapley algorithm
is stable.

3



4 Optimality and Pessimality of the Gale-Shapley
Matching

A problem instance can have multiple stable matchings, which are better or
worse for different members of the market depending on their preferences. We
will show that Gale-Shapley provides the proposers (here, the bands) the optimal
matching from their point of view. However, it provides the worst matching for
drummers, among stable matchings. To make this more precise, we first define
attainability.

Definition: b and d are attainable for each other if there exists a stable
matching in which b and d are matched.

We can now state the main result describing the particular stable matching
found by Gale-Shapley.

Theorem: The matching produced by the Gale-Shapley algorithm matches
each proposer with their best attainable partner, and matches each proposee
with their worst attainable partner.

In other words, Gale-Shapley is proposer-optimal and proposee-pessimal.

4.1 Proof of Proposer-Optimality

We will do a proof by contradiction that Gale-Shapley is proposer-optimal.
The proof for proposee-pessimality is similar, but we won’t worry about going
through it here.

Note that since each band proposes in order of their preferences, every band
being matched to their best attainable drummer means that no band is every
rejected by an attainable drummer. Therefore, to start the proof by contra-
diction, we assume that at some point there is a band b that is rejected by an
attainable drummer d. Let b be the first band rejected by an attainable match
d. Then at the time of the rejection, there must have been another band b′

that was tentatively matched to d that d preferred over b. Also, b′ must prefer
d among all of its attainable drummers, because b′ wasn’t ever rejected by an
attainable drummer before it proposed to d (since we define b as the first band
to be rejected by an attainable drummer).

The first part of the proof simply used definitions to help us infer properties
of the preferences of d, b, and b′. We will use these properties to now wrap up
the proof. Because d is attainable for b (by assumption), by definition there
exists some stable matching M ′ in which they are matched. Since b and d are
matched in M ′, b′ must matched to some other d′, instead of matching to d.
This means (b′, d) is a blocking pair in M ′: we’ve deduced above that b′ prefers
d over all attainable drummers, including d′, and we also deduced above that d
prefers b′ over b. We have a contradiction, as we’ve now shown that M ′ is not a
stable matching! Therefore, the initial assumption that there is some band that
is rejected by an attainable drummer must be wrong. We conclude that every
band always gets their most preferred attainable drummer.

4



5 Learning in Matching Markets

What if the preferences are not known a priori? For example, bands may not
know about drummers’ skills and styles and how suitable they are for the band.
We could consider using a bandit algorithm like UCB to simultaneously learn
one’s preferences while proposing. This produces a situation of multiple bandit-
based learners (for example, the bands) interacting with the different arms (for
example, drummers). If, in a given round, multiple learners choose the same
bandit arm, scarcity—a key concept from economics—kicks in: only one of them
gets the reward, and the others get no reward. Which one gets the reward?
The one that the arm prefers! (Here, we assume the arm’s preferences are fixed
and arbitrary, but we could also extend this problem to arms learning their
preferences.) So the learner without a reward gets an extra piece of information
that the arm prefers that other learners, and may decide it’s not worth pursuing
this arm anymore. (Or, in contrast, the learner that receives the reward has
evidence that the arm prefers it over other competitors, and may decide to
aggressively pursue this arm.) As in our unit on bandits, we a trade-off between
exploration and exploitation.

One application of this problem is finding the fastest route to a popular
destination, like an airport. If too many drivers try a short route, there will be
congestion and most of the drivers’ rewards will go down. Similarly, in matching
diners to restaurants, diners want to explore and learn what the best restaurants
are, but due to limited capacity, the more diners that try a good restaurant the
harder it is to get a reservation.

5


