
Data 102 Assignment 5 Due: 11:59pm PT Friday, November 20, 2020

Overview

Submit your writeup including all code and plots as a PDF via Gradescope. We recommend
reading through the entire homework beforehand and carefully using functions for testing
procedures, plotting, and running experiments. Taking the time to test, maintain, and
reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the
homework, please write up your solutions individually. If you discuss the homework with
your peers, please include their names on your submission. Please make sure any hand-
written answers are legible, as we may deduct points otherwise.

1 Simulation Study of Bandit Algorithms

In this problem, we evaluate the performance of three algorithms for the multi-armed
bandit problem. The general protocol for the multi-armed bandit problem with K arms
and n rounds is as follows: in each round t = 1, . . . , n the algorithm chooses an arm
At ∈ {1, . . . , K} and then observes reward rt for the chosen arm. The bandit algorithm
specifies how to choose the arm At based on what rewards have been observed so far. In
this problem, we consider a multi-armed bandit K = 2 arms, n = 50 rounds, and where
the reward at time t is rt ∼ N (At − 1, 1), i.e. N (0, 1) for arm 1 and N (1, 1) for arm 2.

(a) (2 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen
according to the ε-greedy algorithm (below) with c = 4 and ε = 1/2. Let Gn =

∑n
t=1 rt

denote the total reward after n = 50 iterations. Simulate the random variable Gn a
total of B = 200 times and save the values G

(b)
n , b = 1, . . . , B in a list. Report the

expected value 1
B

∑B
b=1G

(b)
n of the total reward and plot a normalized histogram of

the rewards.

Algorithm 1 ε-Greedy Algorithm

input: Number of initial pulls c per arm; additional exploratory fraction ε ∈ (0, 1)
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end
for t = cK + 1, cK + 2, . . . , n : do

Toss coin with success probability ε:
if success then

Choose arm At uniformly at random
else

Choose arm At with the highest average reward so far.
end

end
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(b) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen
according to the explore-then-commit algorithm (below) with c = 4. Repeat the
simulation in Part (a) using the explore-then-commit algorithm, again reporting the

expected total reward and the histogram of G
(b)
n after n = 50 rounds. How does the

reward Gn compare to your results from part (a)? Compare both the average and the
overall distribution.

Algorithm 2 Explore-then-Commit Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end

Let Â ∈ {1, . . . , K} denote the arm with the highest average reward so far.
for t = cK + 1, cK + 2, . . . , n : do

Choose arm At = Â
end

(c) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen
according to the UCB algorithm (below) with c = 4. Repeat the simulation in Part (a)
using the UCB algorithm, again reporting the expected total reward and the histogram
of G

(b)
n after n = 50 rounds. How does the reward Gn compare to your results from

part (b)? Compare both the average and the overall distribution. Note: if TA(t)
denote the number of times arm A has been chosen (up to and including iteration
t) and µ̂A,t is the average reward from choosing arm A (i.e. the average of the first

t rewards from arm A), then use the upper confidence bound µ̂A,TA(t−1) +
√

2 log(20)
TA(t−1) .

Note also that this algorithm is slightly different than the one used in lab as we are
using an initial exploration phase.

Algorithm 3 UCB Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end
for t = cK + 1, cK + 2 . . . : do

Choose arm At with the highest upper confidence bound so far.
end
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2 Regret of Explore-then-Commit

In this problem, we analyze the regret of the Explore-then-Commit algorithm for the multi-
armed-bandit (MAB) problem.

We consider a stochastic MAB problem with a set of K = 2 arms A = {1, 2}. Recall
from Lab 8 that each arm A ∈ A is associated with a reward distribution XA ∼ PA, with
corresponding mean µA = E [XA]. We will assume throughout this problem that
the first arm has higher average reward, i.e. µ1 > µ2. At each round t = 1, . . . , n
our algorithm chooses an arm At ∈ A and receives a corresponding reward X

(t)
At
∼ PAt ,

independent of all previous rewards.
If we knew arm 1 has higher average reward we would choose At = 1 each round in

order to maximize the expected total reward. In practice, however, we do not know which
arm is better since the means {µ1, µ2} are unknown. The expected reward of our algorithm
will always be less than nµ1, and we quantify the price we pay for not knowing the better
arm via the regret

Rn := nµ1 − E

[
n∑

t=1

X
(t)
At

]
.

In this problem we analyze the regret of the explore-then-commit (ETC) algorithm from
problem 1(b). Recall from Algorithm 2 that ETC proceeds in two phases. In the ex-
ploration phase, each arm A ∈ A is pulled c times in order to produce an estimate
µ̂A = 1

c

∑
t≤cK:At=AX

(t)
A of the mean reward for that arm. In the commit phase, i.e.

for every t > cK, we choose At = Â, where Â := arg maxa∈A µ̂A is the apparent best arm
at the end of the exploration phase.

In the first part of our analysis, we evaluate the probability that we incorrectly identify
arm 2 as the best arm, i.e. P(Â = 2).

(a) (2 points) Assume each reward is in the unit interval [0, 1], i.e. 0 ≤ XA ≤ 1 for
A ∈ {1, 2}. Show that

P
(
Â = 2

)
≤ exp

(
−c∆

2

2

)
,

where ∆ = µ1 − µ2. Hint: apply Hoeffding’s inequality from Lecture 18.

In parts (b) and (c), we write the regret in terms of the probability P(Â = 2).

(b) (3 points) Let m denote the number of times arm 2 has been pulled, up to and
including time n. Show

Rn = ∆E[m].

Hint: Start from the following:

Rn := nµ1 − E

[
n∑

t=1

X
(t)
At

]
= E

[
n∑

t=1

(
µ1 −X(t)

At

)]

= E

[
n∑

t=1

I{At = 1}
(
µ1 −X(t)

1

)]
+ E

[
n∑

t=1

I{At = 2}
(
µ1 −X(t)

2

)]
.
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Note also that for all t, At is independent of X
(t)
A for A ∈ {1, 2}.

(c) (1 point) Show that if n > 2c, then

E[m] = c+ (n− 2c)P
(
Â = 2

)
Hint: If n > 2c, both arms are pulled deterministically c times during the first 2c
rounds. Afterward, an arm is only pulled if it is the one we have committed to.

In parts (d) and (e), we finalize our bound on the regret Rn.

(d) (1 point) Show that

Rn ≤ ∆

(
c+ (n− 2c) exp

(
−c∆

2

2

))
.

Hint: combine parts (a)-(c).

(e) (3 points) Suppose you knew the sub-optimality gap ∆. Solve for (and report) a value
of c which guarantees that:

exp

(
−c∆

2

2

)
≤ 1

n
.

For this number of exploratory pulls c, what is the upper bound on the regret from
part (d)? Your answer should be in terms of n and ∆. Does this bound grow linearly
in n, or does it do better (i.e. is it sublinear)?
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