
Data 102 Assignment 3 Due: 11:59pm PT Friday, October 16, 2020

Overview

Submit your writeup including any code and plots as a PDF via Gradescope.1 We recom-
mend reading through the entire homework beforehand and carefully using functions for
testing procedures, plotting, and running experiments. Taking the time to reuse code will
help in the long run!

Data science is a collaborative activity. While you may talk with others about the
homework, please write up your solutions individually. If you discuss the homework with
your peers, please include their names on your submission. Please make sure any hand-
written answers are legible, as we may deduct points otherwise.

1. GLM for Dilution Assay

Being able to reformulate problems as generalized linear models (GLMs) enables you solve a
wide variety of problems with existing packages. We recommend reviewing the examples of
GLMs from Lectures 10 and 11. In particular, make sure you understand that formulating a
GLM involves choosing an 1) output distribution and 2) link function that are appropriate
for the application at hand.

In this problem, you’ll retrace the footsteps of the statistician R. A. Fisher and develop
one of the very first applications of GLMs. In a 1922 paper, Fisher formulated a GLM
he used to estimate the unknown concentration ρ0 of an infectious microbe in a solution.
Without specialized technology to directly measure ρ0 from the solution, Fisher devised
the following procedure: we will progressively dilute the original solution, and after each
dilution, we’ll pour out some small volume v onto a sterile plate. If zero microbes land on
the plate, it will remain sterile, but if any microbes land on a plate, they will grow visibly
on it (we call this an “infected plate”). By observing whether or not the plate is infected
at each dilution, and by formulating the relationship between this data and ρ0 as a GLM,
we can estimate ρ0 from this data.

Specifically, let ρt denote the concentration at dilution t. Each time, we dilute the
solution to be half its concentration, such that

ρt =
ρ0
2t

(1)

for t = 0, 1, . . .. When we pour out volume v of the solution onto the plate, and wait
awhile to allow for microbe growth, we can observe whether a plate was infected (i.e., has
a non-zero number of microbes) or is sterile (i.e., has zero microbes). Therefore, our data
Yt ∈ {0, 1} is whether or not the plate is infected at each dilution.

We’ll formulate a GLM that relates ρ0 and t to the data Yt. Estimating the parameters
of this GLM will then allow us to estimate ρ0, as will become clear in the last part.

1In Jupyter, you can download as PDF or print to save as PDF
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(a) (2 points) At dilution t, the data Yt ∈ {0, 1} indicates whether or not the plate is
infected. The chance that a plate gets infected is denoted by µ(t) := E[Yt]. Write
down an output distribution for Yt that is appropriate for the values it takes on, using
µ(t) as a parameter.

(b) (5 points) At dilution t, we pour out volume v onto a plate, so the expected number
of microbes on the plate is ρtv. The actual number of microbes is distributed as a
Poisson random variable with this mean ρtv:

# microbes on plate at dilution t ∼ Poisson(ρtv). (3)

Using this fact, write out an expression for µ(t) := E[Yt]. Start with

µ(t) = P(plate is infected at dilution t) (4)

= 1− P(there are 0 microbes on plate at dilution t). (5)

(c) (5 points) Find a link function g such that

g(µ(t)) = β0 + β1t (8)

for some constants β0 and β1.

(d) (3 points) Choosing an appropriate output distribution and link function as we’ve
done in Parts (a) and (c) completes the GLM specification. Now, suppose you’ve
estimated β0 and β1 (e.g., using maximum-likelihood estimation). Write down an
estimate of ρ0.

2. Using Bootstrap to Evaluate Drug Bioequivalence

When drug companies introduce new drugs, the FDA requires them to show that the new
drug is bioequivalent to the current drug used to treat the same condition. Bioequivalence
means that the effect of the new drug is not substantially different from the effect of the
current drug. The way the effect is measured is application-dependent—here, we’ll look at
drugs that infuse a certain hormone into the blood. A drug’s effect is therefore the amount
of hormone in the blood after administering the drug.

To formally define bioequivalence, let the random variables O,N, P denote the effect
of the old drug, the effect of the new drug, and the effect of a placebo, respectively. The
FDA requirement for bioequivalence is that

|θ| ≤ 0.2 (11)

where

θ =
E[N −O]

E[O − P ]
. (12)

In this problem, you’ll estimate θ from a dataset and use the bootstrap to determine,
with a certain confidence, whether or not we have bioequivalence.
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(a) (2 points) The CSV file bioequivalence.csv provided for this homework contains
the following data on the level of a hormone in 8 subjects’ blood, after medications
were administered.

Download the data, and use it to compute the plug-in estimate θ̂ of θ.

(b) (10 points) Part (a) gave an estimate of θ, but by itself it doesn’t capture the certainty
we have in the estimate, so we can’t use it to conclude that we have bioequivalence
with a given confidence level. Instead, we’ll compute a bootstrap confidence interval
to do this.

(i) Implement a function bootstrap bioequivalence(N, O, P, B) which takes in
the following inputs:

• N = (N1, . . . , Nn), an array of the effects of the new drug on n subjects

• O = (O1, . . . , On), an array of the effects of the old drug on n subjects

• P = (P1, . . . , Pn), an array of the effects of the placebo on n subjects

• B, an integer which is the number of bootstrap replicates

and outputs a length-B array of bootstrap replicates of θ̂.

(ii) Using bootstrap bioequivalence(N, O, P, B), compute B = 10000 bootstrap
replicates of θ̂. Plot a histogram of these replicates, and label the x- and y- axes.

(iii) Using the replicates from (ii), compute a 95-percentile confidence interval for θ
(make sure to include the code you use to compute this). Hint: Use the function
np.percentile.

(c) (3 points) Based on Part (b), can we conclude the new drug and old drug are bioe-
quivalent, at the 95% confidence level? That is, does the 95% confidence interval fall
within the FDA requirement for bioequivalence?
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3. Image Denoising with Gibbs Sampling

In this problem, we derive a Gibbs sampling algorithm to restore a corrupted image [1].
A grayscale image can be represented by a 2-dimensional array X of shape n×m, where
the intensity of the (i, j)-th pixel is Xij. In this problem, we are given an image X whose
pixels have been corrupted by noise, and the goal is to recover the original image Z.
(a) (2 points) Load the grayscale image X.pkl as a numpy array X. Visualize the image.

From plotting the image X, it is clear that it has been corrupted with noise. Let
Z denote the original image, which we also represent as an n × m array. Let I =
{(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} denote the collection of all pixels in the image,
represented by the corresponding index of the array. Given a pixel (i, j), define the
set of neighboring pixels to be

N(i,j) = {(i′, j′) ∈ I : (i = i′ and |j − j′| = 1) or (|i− i′| = 1 and j = j′)} .

To capture the fact that, in natural images, neighboring pixels are likely be similar,
we consider the following prior over the original image:

p(Z) ∝ exp

−1

2

∑
(i,j)∈I

aZ2
ij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 .

Assuming the image has been corrupted with Gaussian noiseX(i,j) | Z(i,j) ∼ N (Z(i,j), τ
−1)

(independently across pixels (i, j) ∈ I), the complete posterior can be written as

p(X | Z) ∝ exp

−1

2

∑
(i,j)

(a+ τ)Z2
ij − 2τZijXij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 (15)

Let Sij =
∑

(i′,j′)∈N(i,j)
Zi′j′ . By completing the square in the posterior (15), we have

Zij | (Zi′j′)(i′,j′)6=(i,j), X ∼ N
(
τXij + bSij
a+ τ

,
1

a+ τ

)
(16)

(b) (2 points) Fill in the missing line of pseudocode for a Gibbs sampler of the posterior,
p(Z|X). Be specific with each conditioned variable and sub/superscript!

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Sample Z
(t)
1,1 ∼ p(Z1,1 | Z1,2 = Z

(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,2 ∼ p(Z1,2 | Z1,1 = Z

(t)
1,1, Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,3 ∼ # TODO: fill this in.

– . . .

– Sample Z
(t)
n,m ∼ p(Zn,m | Z1,1 = Z

(t)
1,1, Z1,2 = Z

(t)
1,2, . . . , Zn,m−1 = Z

(t)
n,m−1, X)
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(c) (3 points) Write the pseudo-code from Part (b) more explicitly both by using a double
for-loop over (i, j) ∈ I and by being explicit about the conditional distributions of the

form p(Z1,1 | Z1,2 = Z
(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X). In your pseudo-code,

use np.random.randn() to generate a N (0, 1) random variable at each step.

(d) (5 points) Implement the Gibbs sampler from Part (c) with a = 250, b = 62.5, and
τ = 0.01. Run your code for T = 1 iteration, i.e. update each coordinate exactly
once. Visualize the resulting image Z(1). Time your code and estimate how long it
would take to compute Z(100).

(e) (2 points) The bottleneck in running the Gibbs sampler from Part (d) is sampling a
single pixel Zij with the values of all others held fixed. Fortunately, it is possible
to speed up the sampling process with an improvement known as blocked Gibbs
sampling. Specifically, define two subsets of the pixels Ieven = {(i, j) : i+ j is even}
and Iodd = {(i, j) : i+ j is odd} . The blocked Gibbs sampler proceeds as follows:

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Let Z = Z(t−1).

– Let ∆ be an n×m matrix with N (0, 1
a+τ

) entries.

– For (i, j) ∈ Ieven:

∗ Let Sij =
∑

(i′,j′)∈N(i,j)
Zi′j′

– Update ZIeven = τ
a+τ

XIeven + b
a+τ

SIeven + ∆Ieven .

– For (i, j) ∈ Iodd:

∗ Let Sij =
∑

(i′,j′)∈N(i,j)
Zi′j′

– Update ZIodd = τ
a+τ

XIodd + b
a+τ

SIodd + ∆Iodd .

– Let Z(t) = Z.

The advantage of this approach is that the inner for-loops can be vectorized. Explain
why updating half the variables ZIeven (and then ZIodd) at once is justified.

(f) (1 point) Implement the Gibbs sampler from Part (e) using a = 250, b = 62.5 and
τ = 0.01. Run your code for T = 100 iterations, and visualize the resulting image
Z(100). Time your code and report how long it took. Hint: Compute the entire n×m
matrix S at once using matrix operations on Z. You may find it helpful to pad the
matrix Z with a border of zeros using Z bar = np.pad(Z, 1). Then use slicing on
the (n+ 2)× (m+ 2) matrix Z bar to compute S.
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