
Data 102 Assignment 2 Due: 11:59pm Monday, Oct 5, 2020

Overview

Submit your writeup including any code as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, include their names on your submission. Please make sure any handwritten answers
are legible, as we may deduct points otherwise.

1. Ridge as MAP

In this problem, we work through the maximum a posteriori (MAP) interpretation of ridge
regression. Suppose x1, . . . , xn ∈ Rd are fixed feature vectors. Assume the linear model,
where we observe

yi = β>xi + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent of each other, and β ∈ Rd and σ2 > 0 are unknown.
Let y = (y1, . . . , yn), ε = (ε1, . . . , εn), and let X denote the matrix whose i-th row is equal

to xi. Using this notation, we may more succinctly write the linear model as

y = Xβ + ε, ε ∼ N(0, σ2In).

We model the regression weights as a random variable with the following prior distribution:

β ∼ N(0, σ2βId).

where σ2β > 0 is hyperparameter we choose.

(a) Write the posterior distribution for β after observing the data, p(β|X, y). Hint: use
Bayes’ rule and the probability density functions of multivariate Gaussians. Also use the fact
that for a vector z, zT z = ‖z‖22, where ‖z‖2 is the Euclidean norm of z.

(b) Show that the MAP estimator of β,

β̂MAP := arg max
β

p(β|X, y)

solves the regularized least-squares problem,

arg min
β
‖Xβ − y‖22 + λ‖β‖22

with λ = σ2

σ2
β

. Hint: use part (a).

(c) In the regularized least-squares problem, λ is the regularization term: large values of
λ penalize weight vectors with large norms. Since β̂MAP is the solution to the regularized
least-squares problem with λ = σ2

σ2
β

, explain how our modeling decision (i.e., choice of σ2β)

influences β̂MAP .
1In Jupyter, you can download as PDF or print to save as PDF
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2. Rejection Sampling

Consider the function

g(x) = cos2(12x)× |x3 + 6x− 2| × 1x∈(−1,−.25)∪(0,1).

In this problem, we use rejection sampling to generate random variables with pdf f(x) = cg(x).

(a) Plot g over its domain. What is a uniform proposal distribution q that covers the
support of f? What is a constant M such that the scaled target distribution p(x) = Mg(x)
satisfies p(x) ≤ q(x) for all x?

(b) Suppose you run rejection sampling with target p and proposal q from part (a) until you
generate n samples and your sampler runs a total of N ≥ n times, including n acceptances
and N − n rejections. Explain how you can use n,N and M to estimate c.

(c) Use rejection sampling to generate a sample of size 103 from f and overlay a line plot
of f atop a normalized histogram of your samples. Repeat this step with 106 samples. Hint:
to plot f , first use your values of n,N and M to estimate c using your answer from part (b).

3. Gibbs Sampling

Graphical models are often useful for modeling phenomena involving multiple variables. In
this problem, you’ll formulate a graphical model, then demonstrate how to sample from the
posterior using Gibbs sampling.

(a) Consider the following scenario: suppose the probability that a burglar breaks into your
car is πb, and the probability that an innocent passerby accidentally touches your car is πi.
Let Zb be a binary random variable that is 1 if there is a burglar, and 0 otherwise. Likewise,
let Zi be a binary random variable that is 1 if there is an innocent passerby, and 0 otherwise.
Suppose Zb and Zi are independent of each other.

Let X be a binary random variable that is 1 if your car alarm goes off. The probability
your car alarm goes off depends on Zb and Zi, and is known to be:

Zb Zi P(X = 1 | Zb, Zi)
0 0 0

0 1 0.05

1 0 0.85

1 1 0.90

Draw the graphical model depicting the direct relationships between πb, πi, Zb, Zi, and X.

(b) Suppose you know the parameters πb and πi, as well as P(X = 1 | Zb, Zi) as specified in
Part (a). X is the observed variable, and Zi and Zb are the latent (unobserved) variables. We
want to sample from P(Zi, Zb | X,πb, πi), the posterior over the latent variables conditioned
on everything else. We’ll use Gibbs sampling to do this:
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(i) Suppose we are running Gibbs sampling, and on each iteration we sample Zb first and
then sample Zi. We observed X = 0, and the values of Zb and Zi from iteration t are

Z
(t)
b = 0 and Z

(t)
i = 1.

Derive the distribution used for the Gibbs sampling update of Z
(t+1)
b . Your solution

should be in terms of πb, πi, and constants.

(ii) Now, suppose we draw Z
(t+1)
b = 1 from the distribution derived in Part (b.i). Derive

the distribution used for the Gibbs sampling update of Z
(t+1)
i . Your solution should be

in terms of πb, πi, and constants.
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