
Data 102 Assignment 1 Due: 5pm Friday, Sept 18, 2020

Overview

Submit your writeup including any code as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

1. Math Stats

Work through the following exercises, and explain your reasoning in your answer.

(a) Suppose we have n independent null p-values P1, . . . , Pn that are uniformly distributed
on [0, 1]. Recall that the level-α Bonferroni procedure rejects all Pi such that Pi ≤ α/n. What
is the probability that the level-α Bonferroni procedure rejects any of the Pi? Is your answer
smaller or larger than α?

(b) Suppose we have a waiting time T ∼ Exponential(λ) and wish to test H0 : λ = 1 versus
H1 : λ = λ̄ for some λ̄ > 1. What test δ∗(T ) maximizes TPR(δ) subject to FPR(δ) ≤ α? Hint.

Recall from section that the Neyman-Pearson lemma states δ∗(t) = 1
{
f1(t)
f0(t)

> η
}

, where fi is

the likelihood of T under Hi and η ≥ 0 is some cutoff. Set the FPR(δ∗) = α and write δ∗(T )
explicitly in terms of T, α and λ̄.

(c) Suppose a particular drug test is 99% sensitive and 98% specific. The null hypothesis
H0 is that the subject is not using the drug. Assume a prevalence of π0 = 99.5%, i.e. only
0.5% of people use the drug. Consider a randomly selected individual undergoing testing.
Rounding to the nearest three significant figures, find

(i) the probability of testing positive given H0.

(ii) the probability that they are not using the drug given they test positive.

(iii) the probability of testing positive a second time given they test positive once. You may
assume the two tests are statistically independent given drug user status.

(d) Consider the null hypothesis H0 that random variable X has tail cdf F̄0, and the alter-
native hypothesis H1 that X has tail cdf F̄1. Assume that F̄1(x) ≥ F̄0(x) for all x and that
F̄0 is invertible. Show that, under the alternative H1, the p-value P = F̄0(X) is sub-uniform,
i.e. P(P ≤ p) ≥ p for all p ∈ [0, 1].

1In Jupyter, you can download as PDF or print to save as PDF
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2. Online Experiments

In some applications of multiple testing, it is not possible to collect all p-values before making
decisions about which hypotheses should be proclaimed discoveries. For example, in A/B
testing in tech, p-values arrive in a continual stream, so decisions have to be made in an online
fashion, without knowing the p-values of future hypotheses. In this question, we compare
an online algorithm for FDR control called LORD with the classical Benjamini-Hochberg
(BH) procedure. We will provide an implementation of the LORD algorithm, however, for
completeness, we also state the steps of the LORD algorithm below. Don’t worry if you don’t
have intuition for the αt update; the important thing is that such an update ensures that
FDR is controlled at any given time t.

Algorithm 1 The LORD Procedure

input: FDR level α, non-increasing sequence {γt}∞t=1 such that
∑∞

t=1 γt = 1, initial wealth
W0 ≤ α

Set α1 = γ1W0

for t = 1, 2, . . . do
p-value Pt arrives
if Pt ≤ αt, reject Pt
αt+1 = γt+1W0 + γt+1−τ1(α−W0)1{τ1 < t}+ α

∑∞
j=2 γt+1−τj1{τj < t},

where τj is time of j-th rejection τj = min{k :
∑k

l=1 1{Pl ≤ αl} = j}
end

While offline algorithms like Benjamini-Hochberg take as input a set of p-values, online
algorithms take in an ordered sequence of p-values. This makes their performance sensitive to
p-value ordering. In this exercise we analyze this phenomenon. Generate N = 1000 p-values
in three different ways:

(i) For every i ∈ {1, . . . , N}, generate θi ∼ Bern(1 − π0). If θi = 0, the p-value Pi is null,
and should be generated from Unif[0, 1]. If θi = 1, the p-value Pi is an alternative.
Then, generate Zi ∼ N (3, 1), and let Pi = Φ(−Zi), where Φ is the standard Gaussian
N (0, 1) CDF.

(ii) For i = 1, . . . , π0N , set θi = 0, meaning the hypothesis is truly null, and let Pi ∼
Unif[0, 1]. For i = π0N + 1, . . . , N , θi = 1, and the hypothesis is truly alternative.
Then, generate Zi ∼ N (3, 1), and let Pi = Φ(−Zi), where Φ is the standard Gaussian
N (0, 1) CDF.

(iii) For i = 1, . . . , N − π0N , set θi = 1, meaning the hypothesis is alternative, generate
Zi ∼ N (3, 1), and let Pi = Φ(−Zi), where Φ is the standard Gaussian N (0, 1) CDF.
For i = N −π0N + 1, . . . , N , θi = 0, and the hypothesis is truly null; let Pi ∼ Unif[0, 1].

(a) Run the LORD algorithm with α = 0.05 on three p-value sequences, given as in (i), (ii)
and (iii), respectively. Compute the false discovery proportion (FDP) and sensitivity. Repeat
this experiment 100 times to estimate FDR as the average FDP over 100 trials, as well as
the average sensitivity. Do this for all π0 ∈ Π0 := {0.1, 0.3, 0.5, 0.7, 0.9}. Make the following
plots:

2



Data 102 Assignment 1 Due: 5pm Friday, Sept 18, 2020

• FDR estimated over 100 trials on the y-axis against π0 ∈ Π0 on the x-axis, for the three
different scenarios (i), (ii) and (iii).

• Expected sensitivity estimated over 100 trials on the y-axis against π0 ∈ Π0 on the
x-axis, for the three different scenarios (i), (ii) and (iii).

For which of the three scenarios (i), (ii), (iii) does LORD achieve highest average sensitivity?
Can you give an intuitive explanation for this?

(b) Now also run the Benjamini-Hochberg procedure with α = 0.05 for settings (i), (ii), (iii)
on the whole batch; generate all of N p-values, and then apply BH. Make the same plots as
in part (a). How does the sensitivity of BH compare to the sensitivity of LORD? How does
the sensitivity of BH compare in settings (ii) and (iii)?

3. Bias in Police Stops

The following example is taken from [1, Ch. 6]:

A study of possible racial bias in police pedestrian stops was conducted in New
York City in 2006. Each of N = 2749 officers was assigned a score zi on the basis
of their stop data, with large positive values of zi being possible evidence of bias.
In computing zi, an ingenious two-stage logistic regression analysis was used to
compensate for differences in the time, place, and context of the individual stops.

We provide the data in a file policez.csv.

(a) In one plot, make a normalized histogram of the z-scores and a line plot of the pdf of
the theoretical null N (0, 1). Describe how the fit looks.

(b) Compute p-values Pi = Φ(−zi) and then apply the BH procedure with α = 0.2. Plot
the sorted p-values as well as the decision boundary. How many discoveries did you make?

(c) A better fit to the z-scores is given by N (0.10, 1.402), called the empirical null. Repeat
steps (a) and (b) treating the empirical null as the null distribution.

(d) What assumption(s) are we implicitly making in part (c) by replacing the theoretical
null N (0, 1) with one which fits the data well N (0.10, 1.402)? What are the limitations of
using the theoretical null? Which approach would you take when reporting discoveries of bias
in this example? What other limitations do you see to this approach to modeling bias?
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