
DS 102 Discussion 12
Wednesday, November 25, 2020

In this discussion, we’ll practice the nuts and bolts of backpropagation presented in
Lecture 24 by applying it to a two-layer neural network. This will help demonstrate how
backpropagation can efficiently compute the partial gradients of complicated functions.

1. Backpropagation for a two-layer neural network. Consider a two-layer neural
network that computes a real-valued function of the form fAb(x) = bTσ(Ax) where
x ∈ Rm, A ∈ Rh×m, b ∈ Rh×1, and σ is the element-wise sigmoid function given by
σ(y) = 1/(1 + exp(−x)) (the subscript notation in fAb is used to emphasize that A and
b are the parameters of the function). In other words, the neural network has input size
m, h units in the hidden layer, and a single scalar output.

The neural network fAb can be trained to predict a real-valued output given an m-
dimensional input (a regression problem). Given a dataset of n input-output pairs,
{(xi, yi)}ni=1, a common way of training a neural network to perform this task is to find
the parameter values (values of the matrix A and the vector b) that minimize the squared
error loss over the dataset:

argmin
A,b

n∑
i=1

(yi − fAb(xi))2 = argmin
A,b

n∑
i=1

(yi − bTσ(Axi))
2.

To perform this minimization, gradient descent is conducted on the loss with respect to
the parameters A, b.

For simplicity, here we’ll just focus on the partial derivatives of the squared error loss
evaluated on a single data point, (x, y):

L(A, b) = (y − fAb(x))2 = (y − bTσ(Ax))2.

Backpropagation leverages the chain rule, along with dynamic programming, to compute
the required partial derivatives ∂L(A,b)

∂A
and ∂L(A,b)

∂b
in an efficient way. This requires first

computing intermediate quantities in the computation graph in what’s called a “forward
pass”. That is, backpropagation first computes L(A, b) by computing the quantities
z1 = Ax, z2 = σ(z1), z3 = bT z2, the error z4 = y − z3, then finally the loss L(A, b) = z24 .
In the following problem parts, assume these have already been computed for your use.

(a) Backpropagation then performs a “backward pass” to compute the partial deriva-

tives, starting with ∂L(A,b)
∂b

. Using the chain rule, write down an expression for
∂L(A,b)
∂b

. Use intermediate quantities from the forward pass listed above wherever
possible, since these have already been computed.

Hint: Note that b is an h-dimensional vector, so the partial derivative will be an
h-dimensional vector. The expression bTσ(Ax) = bT z2 is a dot product between the
vector b and the vector z2. Recall that for a dot product between two vectors vTw,
we have ∂vTw

v
= w.



(b) Using the chain rule, write down an expression for ∂L(A,b)
∂A

. Use intermediate quan-
tities from the forward pass wherever possible.

Hint: A is an h×m-dimensional matrix, so the partial derivative will be an h×m-
dimensional matrix. You can approach this problem by noting that

∂L(A, b)

∂A
= 2(y − bTσ(Ax)) · −∂b

Tσ(Ax)

∂A

and finding the partial derivative of bTσ(Ax) with respect to each element Aij of
A. Use this result to write the partial derivative of A in terms of matrices and/or

vectors. Note that the derivative of the sigmoid function is σ(x)
x

= σ(x)(1− σ(x)).

Page 2


