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In this discussion, we’ll review the concepts of the value function V (s) and Q-function
Q(s, a) introduced in Lectures, and practice going through the computations needed to solve
them.

First, a brief overview of Markov Decision Process (MDP) terminology:

• s ∈ S: states

• a ∈ A: actions we can take from states

• P(s′ | s, a): transition function, capturing the distribution over states we will end up
in if we take action a from state s

• R(s, a, s′): reward function, which we receive at each iteration when we take action a
from state s to end up in state s′.

• γ ∈ [0, 1]: discount factor for rewards received after the current iteration

• π : S → A: policy, describing a strategy of what action to take from a state

The value function V π(s) of a policy π gives the expected (discounted) reward received
when starting from state s and using strategy π:

V π(s) =
∑
a∈A

π(a | s)
∑
s′∈S

P(s′ | s, a) [R(s, a, s′) + γV π(s′)] .

This equation is also known as the Bellman equation.
We are often interested in the value function of a particular policy: the one that is optimal

from state s. This is the optimal value function V ∗(s):

V ∗(s) = max
a∈A

∑
s′∈S

P(s′ | s, a) [R(s, a, s′) + γV ∗(s′)] .

Similarly, the optimal Q-function Q∗(s, a) gives the expected (discounted) reward re-
ceived when starting from state s, taking action a, then taking the optimal actions thereafter:

Q∗(s, a) =
∑
s′∈S

P(s′ | s, a) [R(s, a, s′) + γV ∗(s′)] .

A typical goal in reinforcement learning is to find a policy π∗ that maximizes our expected
discounted reward. Building up to that goal, we first need to understand how to evaluate
the optimal value function and optimal Q-function.

1. We have the following grid representation of a problem:



1

× start −100

where start represents our initial state, × is a state we can’t access, and the 1 and
−100 states are terminal states with corresponding rewards. The reward received when
moving to any other state is zero.

(a) Assume state transitions are deterministic, meaning that an action in a particular
direction always moves us in that direction (unless it’s toward the × state, in which
case we stay in the same state). Compute the optimal value function at each state,
when γ = 0.9.

(b) Compute the optimal Q-function at our initial state for the actions of going up,
down, left, and right.

(c) Based on the optimal Q-function you just computed, what would be the optimal
move to make from start?
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(d) Now suppose the state transitions are stochastic, such that there is a 0.8 probability
of going in the direction you specified, and a 0.1 probability of going in either of
the directions perpendicular to what specified. For example, if you decide to go up,
you go up with 0.8 probability, go left with a 0.1 probability, and go right with a
0.1 probability. What is the best action to perform from start?

Page 3


