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1 Concentration inequality for Poisson distribution

Let X be the sum of 20 i.i.d. Poisson random variables X1, . . . , X20 with E[X1] = 1. Use the
following techniques to upper bound Pr(X ≥ 26).

1. Markov’s Inequality

2. Chebyshev’s Inequality

3. Chernoff Bound

(Hint: if X, Y are independent Poisson random variables with parameter λ1, λ2, then Z =
X + Y is a Poisson random variable with parameter λ1 + λ2.).



2 Multi-Armed Bandits: UCB and Hoeffding’s inequal-

ity

In the Tuesday’s lecture, we began talking about multi-armed bandits. In the multi-armed
bandits setting, we consider a decision-maker who is given K options to choose from. We
refer to these options as “arms”. Associated with each arm is a probability distribution over
rewards. Initially, this distribution is unknown to the decision-maker. The decision-maker
chooses an arm, usually referred to as pulling an arm, and receives a reward sampled from
the corresponding reward distribution. This process is repeated over and over again.

The problem we want to solve is to decide which arm to pull at each time step. One
possible algorithm for deciding which arm to pull is the Upper Confidence Bound (UCB)
algorithm presented in lecture. If we assume that the reward of each arm is bounded (e.g.
the slot machine returns between $0 and $100), then the UCB algorithm has bounded regret
over time.

In this discussion, we study the derivation of the UCB algorithm using the Hoeffding
bound. We will assume that the reward of each arm is bounded.

1. We first set up the framework of a multi-armed bandit problem. Suppose you have a
set of K “arms”, A = {1, 2, ..., K}. Each arm a ∈ A has its own reward distribution
Xa ∼ Pa with mean µa = E[Xa]. Define the number of times arm a has been pulled up to
and including time t as Ta(t). In these problems we do not know µa but we would like to
efficiently find the arm with the maximum mean by creating an algorithm that balances
exploration of the arms with exploitation of the best possible arm. The efficiency of the
algorithm is measured by a theoretical quantity known as regret, which measures how
well the algorithm performs in expectation against an ‘oracle’ that knows the means of
all the arms and always pulls the arm with highest mean.

We will now derive the upper confidence bound that yields the UCB algorithm. The
general formula for constructing an upper confidence bound for the true mean µa of an
“arm” a, given Ta(t) samples X

(1)
a , ..., X

(Ta(t))
a , is to find a value of Ca(Ta(t), δ) such that:

P (µa < µ̂a,Ta(t) + Ca(Ta(t), δ)) > 1− δ (1)
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where µ̂a,Ta(t) is the sample mean of the reward from arm a, given by µ̂a,Ta(t) = 1
Ta(t)

∑Ta(t)
i=1 X

(i)
a .

In words, Equation (1) says that with probability at least 1− δ, the true mean µa is less
than the estimated mean µ̂a,Ta(t) plus an upper confidence bound Ca(Ta(t), δ).

(a) Suppose that you know that the reward of any arm is between 0 and 1. That is:

Xa ∈ [0, 1]

Construct an upper confidence bound Ca(Ta(t), δ) for the mean of arm a, after
observing Ta(t) samples from arm a.

(b) Suppose we set δ = 1
t3

. This controls the probability that the true mean µa is greater
than our upper confidence bound Ca(Ta(t), δ) on the estimated mean µ̂a,Ta(t). What
rule does the UCB algorithm use to choose an arm At at each iteration t?
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