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1 Background on instrumental variables

In our lectures on causal inference, we’ve looked at two extremes on how to infer treatment
effects: the randomized trial where we have complete control of the treatments, and the
observational study where we have no control over the treatments, but try to estimate
treatment effects from data we observe. Instrumental variables are a strategy that falls
somewhere in between.

Suppose we are interested in determining whether reading more books causes students’
SAT test scores to improve. It’s not always a good idea to conduct a randomized trial, since
we may not ethically or practically be able to force people to read or not read. On the other
hand, if we were to just look at observational data, there might always be an unobserved
confounding variable that interferes with our ability to infer the causal effect of reading.
For example, one confounder might be a student’s family’s income, since it changes the
educational resources (including both reading material and standardized test preparation) a
student had growing up.

As something in between those two approaches, we might employ encouragement design.
In this setting, we randomly select people and encourage them to read by organizing a
“readathon” at their school. This encouragement, which we call an instrumental variable
(IV), needs to satisfy two properties in order to use the method we develop today:

1. It has a causal effect on the treatment variable (here, how much a student reads).

2. It has no direct effect on the outcome variable (here, a student’s SAT score), only
indirectly through the treatment variable. (This condition also implies the IV has no
effect on the confounder.)

Organizing a readathon has no effect on a student’s SAT score directly or on a student’s
household income, but has a causal effect on the number of books a student will read.

Our encouragement design results in a dataset of n students, with the following variables:

• Y (i) is the SAT score of the the i-th student.

• X
(i)
1 is how many books the i-th student read over the last month.

• Z(i) ∈ {0, 1} indicates whether or not a readathon was organized at the i-th student’s
school (instrumental variable).

Finally, let X
(i)
2 denote the i-th student’s family’s income (a confounder), which we do not

observe.
In the following problems, we will develop a method for using Z to estimate the causal

effect of X1 on Y , even though we know they are confounded by X2. See Figure 1 for the
causal graphical model of this setup.
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Figure 1: A causal graphical model showing the instrumental variable setup. The instru-
mental variable Z does not affect the confounder X2 (income), nor does it affect the outcome
Y (SAT score), except through the treatment X1 (number of books read).

2 Instrumental variables and two-stage least squares

(2SLS)

How can we use an instrumental variable Z to infer the causal effect of X1 on Y ? One
approach is to model the causal relationship between Y and X1 as a linear regression problem.

Let’s assume that the i-th student’s SAT score is generated through the following linear
model:

Y (i) = β1X
(i)
1 + β2X

(i)
2 + ε(i),

where β1, β2 are unknown coefficients, and ε(i) ∼ N (0, σ2) is noise.

Our goal is to accurately estimate β1, which tells us how Y (i) varies with X
(i)
1 .

1. Before we incorporate the instrumental variable, let’s first see what can go wrong when
we don’t employ encouragement design and include instrumental variables in the linear
regression problem.

Suppose we observe X
(i)
1 but not the confounding variable X

(i)
2 . We decide to run a

linear regression model on the observed variable X1 only. Define the vectors

X1 =


X

(1)
1

X
(2)
1
...

X
(n)
1

 ; X2 =


X

(1)
2

X
(2)
2
...

X
(n)
2

 ; Y =


Y (1)

Y (2)

...
Y (n)

 .
Find the least square estimator of β1 which minimizes the term ‖Y−X1β1‖22 =

∑n
i=1(Y

(i)−
X

(i)
1 β1)

2, i.e. compute β̂1 = argminβ1 ‖Y −X1β1‖22. This is also known as ordinary least
square (OLS) estimator.

Solution: The solution can be derived via multiple ways. One can directly take
the derivative with respect to β1, let F (β1) = ‖Y − X1β1‖22 = Y >Y − 2Y >X1β1 +
β>1 X

>
1 X1β. Note that since β1 is a scalar, it is a quadratic function. We can directly

take the derivative and set it to be 0, which gives

β̂1 = (X>1 X1)
−1X>1 Y.
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As a more general solution of OLS estimator, if β1 is a d × 1 vector and X1 is a
n × d matrix, we can compute the derivative with respect to the vector as (as a
reference, The matrix cook book provides a thorough list of the related vector and
matrix computation.)

∂F

∂β1
= 2X>1 X1β − 2X>1 Y.

By setting the derivative to be 0, we have

β̂1 = (X>1 X1)
−1X>1 Y.

2. Assuming that n = 1 for simplicity, can you think of a plausible situation where β̂1 is a
biased estimator?

Solution: Suppose n = 1. A simple situation would be a case where X1 depends on
X2. For example, we could have

X1 =
X2

50000
+ ε′

=⇒ X2 = 50000X1 + ε′′,

where ε′ and ε′′ are both zero mean noise variables. This corresponds to the situation
where a student is generally more likely to read more books if their family is wealthy.

E
[
β̂1

]
= E

[
Y (1)

X
(1)
1

]

= E

[
β1X

(1)
1 + β2X

(1)
2 + ε

X
(1)
1

]
= β1 + 50000β2.

Depending on β2, this can be an extremely biased estimator.

3. Now suppose we employ encouragement design: we incentivize a randomly chosen subset
of students to read more books by organizing a readathon at their school. Let

Z =


Z(1)

Z(2)

...
Z(n)

 ,
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where Z(i) = 1 if the i-th student’s school had a readathon and Z(i) = 0 otherwise.

In this problem, we use our intuition to develop an estimator of the effect of X1 on Y .
Informally, we can think of β1 as the rate of change of Y (i) with respect to X

(i)
1 . Then

it follows from the chain rule that

dY (i)

dX
(i)
1

=
dY (i)/dZ(i)

dX
(i)
1 /dZ(i)

.

An intuitive estimator of β1 is then to estimate both the denominator and numerator of
this fraction:

β̂IV =
(Z>Z)−1Z>Y

(Z>Z)−1Z>X1

.

Show that
β̂IV = (Z>X1)

−1Z>Y.

Solution: The solution can be seen by noting that Z>Z, Z>Y , Z>X1 are scalar.
Thus the (Z>Z)−1 in both numerator and denominator cancel each other. As a more
general case, if both Z and X1 are n× d matrices, we have

β̂IV = ((Z>Z)−1Z>X1)
−1(Z>Z)−1Z>Y

= (Z>X1)
−1(Z>Z)(Z>Z)−1Z>Y

= (Z>X1)
−1Z>Y.

The purpose of simplifying this expression will become clear in Problem 4, when we
compare it to the 2SLS procedure.

4. To formalize the estimator we derived in the previous problem, we now consider the
two-stage least squares estimator (2SLS). This estimator uses the instrumental variable
Z to get a better estimate of the relationship β1 between X1 and Y , and has two stages:

1. Find the OLS estimate with X1 as the output and Z as the input:

α̂ = (Z>Z)−1Z>X1.

2. Find the OLS estimate with Y as the output and X̂1 = Zα̂ as the input:

β̂2SLS = (X̂>1 X̂1)
−1X̂>1 Y.

Show that β̂2SLS = β̂IV .
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Solution:

β̂2SLS = (Z>α̂Zα̂)−1Z>α̂Y (replacing X̂1 with Zα̂)

= α̂−1(Z>Z)−1Z>Y

= (Z>X1)
−1(Z>Z)(Z>Z)−1Z>Y

= β̂IV

This shows that the 2SLS procedure produces the same estimator as the one derived
in Problem 2, where we used our intuition to combine the relationships between Y
and Z and between X1 and Z.
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