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Introduction

In this discussion, we’ll explore more of the wonders of the bootstrap. In particular, we’ll see
how it can be used for hypothesis testing, by providing an estimate of the null distribution in
situations where the null distribution is far too complicated to derive in closed-form (which
is common in real-world problems).

First, we’ll review the set-up of a generic hypothesis testing problem. Suppose we have
a sample X ∼ P from some unknown distribution P . Our goal is to test whether P satisfies
a certain condition:

H0 : P does not satisfy the condition (1)

HA : P does satisfy the condition. (2)

For example, the condition could be that the mean of the distribution is greater than zero
(H0 : EP [X] = 0, HA : EP [X] > 0), or that the distribution is different from some reference
distribution Q (H0 : P = Q,HA : P 6= Q).

Suppose we have some test statistic T (that is, some function of X) that we think is
appropriate for distinguishing HA from H0, and we observe the value T = t for our sample
X. By definition, the test will have significance level α if

P0(T ≥ t) ≤ α

where P0 denotes probability under the null hypothesis H0, and P0(T ≥ t) is called the
p-value. Therefore, to test H0 vs. HA with significance level α, we need to compute the
p-value. That requires us to know the null distribution, or the distribution of the test
statistic under the null hypothesis—a common bottleneck in hypothesis testing, because this
distribution can be difficult or impossible to derive in closed-form.

However, we can use the bootstrap to estimate the distribution of T under the null
distribution, by simulating situations where the null hypothesis is true.

Application of Bootstrap for Hypothesis Testing

The application we’ll consider is the analysis of the velocities (in km/sec) X1, . . . , X82 of
n = 82 galaxies measured during a survey of the Corona Borealis region of the sky. The
distribution of galaxy velocities provides information about the structure of the far universe—
in particular, astrophysicists interpret a multimodal distribution of velocities as evidence for
the existence of voids and superclusters.

Our goal is therefore to perform a hypothesis test of whether or not the distribution of
velocities is multimodal:

H0 : m(p) = 1 (3)

HA : m(p) > 1 (4)



where p is the distribution of galaxy velocities, and the function m gives the number of
modes of a distribution.

To develop an appropriate test statistic for this problem, we have to get creative. We
want a test statistic that somehow quantifies how suitable a unimodal distribution is for
modeling this data. If such a test statistic takes on a low value, we could then reject the
null. One way we can devise such a test statistic is a following: we’ll model our data using
kernel density estimation:

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(5)

where K is some non-negative kernel function that captures the influence of each data point
Xi on the density of an arbitrary point x. A common choice of kernel is the Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2).

The parameter h > 0 is a bandwidth parameter that captures how close data points Xi must
be to x to influence its density. For larger values of h, more data points have an influence on
the density at x, whereas for smaller values of h, only data points very close to x influence
it. Both K and h are user-selected.

It can be shown that the number of modes of p̂h(x) decreases monotonically as h increases.
For our galaxy data, the relationship between m(p̂h) and the bandwidth h is shown in the
following figure:

Let H1 be the minimal bandwidth value for which p̂h is unimodal:

H1 = min{h : m(p̂h) = 1, m(p̂h′) > 1 for all h′ < h}. (6)

We will use H1 as the test statistic. For our galaxy data, the observed value of the test
statistic is h1 = 3.05 (as you can see from the figure).
(a) In order to perform a hypothesis test with significance level α, what do we need to

compute? What distribution does this require knowledge of?

Solution: We need to compute the p-value P0(H1 ≥ h1) ≤ α, the probability under
a unimodal distribution that we observe a value as extreme as h1. This requires
knowledge of the distribution of the test statistic H1 under the null hypothesis (i.e.,
under a unimodal distribution).
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(b) Propose a distribution we can use for the null hypothesis. Hint : Restrict yourself to
distributions of the form of a kernel density estimate.

Solution: The distribution p̂h1 is, in some sense, the unimodal distribution that
best fits our data, so use p̂h1 as the distribution for the null hypothesis.

(c) Let X∗ = (X∗1 , . . . , X
∗
82) denote a bootstrap sample from the dataset. It can be shown

that Z∗i = X∗i + h1εi for εi ∼ N (0, 1) gives independently and identically distributed
samples from p̂h1 (we won’t worry about proving this here). Using this fact, write down
a bootstrap procedure for computing the p-value.

Solution:

1. Draw B bootstrap samples from the dataset, X∗(1), . . . , X∗(B) where X∗(b) =
(X
∗(b)
1 , . . . , X

∗(b)
82 ).

2. Use these bootstrap samples to get B independent samples Z∗(1), . . . , Z∗(B)

from the null distribution p̂h1 , where

Z∗(b) = (Z
∗(b)
1 , . . . , Z

∗(b)
82 ) (7)

Z
∗(b)
i = X

∗(b)
i + h1ε

(b)
i (8)

ε
(b)
i ∼ N (0, 1) (9)

3. Evaluate the B bootstrap replicates of the test statistic, h
∗(b)
1 = H1(Z

∗(b)) for
b = 1, . . . , B.

4. Estimate the p-value using these bootstrap replicates (which provide an esti-
mate of the distribution of the test statistic H1 under the null hypothesis):

estimate of P0(H1 ≥ h1) =
1

B

B∑
b=1

1[h
∗(b)
1 ≥ h1]. (10)
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