
DS102 - Discussion 4
Wednesday, 23rd September, 2020

In this discussion we will investigate more examples of conjugate priors, that is, pairs of
distributions (for the likelihood and the prior) such that the prior and posterior are from the
same distribution, with possibly different parameters.

Recall that for observed data X, and prior distribution p(θ) on parameters θ, the posterior
probability distribution on θ, after seeing the data, is given by1

p(θ|x) =
p(x|θ) · p(θ)

p(x)

∝ p(x|θ) · p(θ)

where ∝ denotes “proportional to.” We can always work this proportionality and solve for
the proportionality constant at the end.

1. (Beta and Binomial) Say you’ve observed a sequence of coin flips, X1, ..., Xn, all using
the same coin, which has some probability of landing heads, ph. Denote by H the total
number of heads:

H =
n∑
i=1

I{Xi = heads}

H follows a binomial distribution, with PDF

p(H = k) =

(
n

k

)
pkh(1− ph)n−k

We didn’t make this coin, it was given to us. We’re willing to place a prior distribution
on the probability of it landing heads, and we’ll use the beta distribution to do so
(for reasons we’ll investigate). The beta distribution PDF is parameterized by shape
parameters α > 0 and β > 0, and is given by

f(z;α, β) =
(α + β − 1)!

(α− 1)!(β − 1)!
zα−1(1− z)β−1, 0 < z < 1

(a) Show that the beta is a conjugate prior for the binomial distribution. What are the
shape parameters for the posterior distribution?

Solution:

f(k|ph) · f(ph;α, β) =

(
n

k

)
pkh(1− ph)n−k ·

(α + β − 1)!

(α− 1)!(β − 1)!
pα−1
h (1− ph)β−1

=
n!

(n− k)!k!
· (α + β − 1)!

(α− 1)!(β − 1)!
(ph)

k+α−1(1− ph)n−k+β−1

1The prior distribution on the parameters is given by p(θ) and the likelihood p(x|θ).



Where the second line follows from rearranging terms. In terms of ph, the first
two fractions are constant, so we can write

f(ph|H = k) ∝ f(k|ph) · f(ph;α, β)

∝ (ph)
k+α−1(1− ph)n−k+β−1

From this we conclude that the posterior distribution has a beta distribution
with shape parameters (k + α) and (n− k + β).

(b) Now that we’ve gone through the mechanics, let’s take a closer look at the beta
distribution and its parameters. In particular, assume β > 1 and α > 1 .
(i) When α > β, are small z (closer to zero) or large z (closer to 1) more likely
under f(z;α, β)? What about α = β?

Solution: When α > β, larger z are more likely. When β > α, the reverse is
true.

(ii) What is special about beta(1,1)?

Solution: beta(1,1) is the uniform distribution.

Figure 1: Beta distributions for various parameters

(c) Interpret the posterior distribution as an update to the prior distribution, after hav-
ing seen the data. To get you started, suppose you started with a beta distribution
prior on ph, with α = 1, β = 1, then after n = 10 flips, you observe k = 5 heads.
What if there were k = 8 heads?
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Solution: The posterior probability has parameters α2 = k + α and β2 =
n− k + β. If the prior has parameters α = 1, β = 1, and half of the 10 flips are
heads, then the resulting posterior distribution is beta(6,6), which is symmetric
about 0.5, the observed mean of heads. If 8 of 10 flips are heads, the posterior
distribution is beta(9,3), which puts more probability on z close to 1 (and is not
symmetric).

What if the prior had set α = 2, β = 8?

Solution: In this case, the posterior after seeing 5 heads is beta(7,13), and
after seeing 8 heads would be beta(10,10).

Now comment more broadly on what you observe.

Solution: One way to think about this prior is as if you started the process
with a phantom α− 1 head flips and β − 1 tail flips, and proceeded from there.

As we see more flips (bigger n), we are able to sway the distribution toward the
opposite of the prior, if that is what the data suggests. Also as n + α + β gets
big, the variance in the posterior distribution decreases, with a single mode in
the distribution.

2. (Gaussian and Gaussian)

Show that Gaussian is conjugate prior to itself with fixed variance, i.e. if X ∼ N (µ, σ2
0),

µ ∼ N (µ1, σ
2
1) follows two Gaussian distributions, where µ1, σ0, σ1 are constants, then

µ|X follows a Gaussian distribution with new mean µ∗ and σ∗.

Solution: We have

p(µ|X) ∝ p(X|µ)p(µ)

∝ exp(−(X − µ)2

2σ2
0

− (µ− µ1)2

2σ2
1

)

∝ exp(−(µ− µ∗)2

2σ∗2
),

where µ∗ = µ1 +
σ2
1

σ2
0+σ2

1
(X − µ1), σ∗2 =

σ2
0σ

2
1

σ2
0+σ2

1
.

3. (Gamma and Exponential)

A gamma distribution with parameters α, β has density function p(x) = βα

Γ(α)
xα−1e−βx

where Γ(t) is the gamma function (see https://en.wikipedia.org/wiki/Gamma_distribution).
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Show that gamma distribution is a conjugate prior for exponential distribution for mul-
tiple measurements, i.e. if we have samples X1, X2, · · · , Xn that are mutually indepen-
dent given λ, and each Xi ∼ Exp(λ) and λ ∼ Gamma(α, β), then λ|X1, X2, · · · , Xn ∼
Gamma(α∗, β∗) for some values α∗, β∗.

Solution:

p(λ|X1, X2, · · · , Xn) ∝ p(X1, X2, · · · , Xn|λ)p(λ)

∝ λne−λ
∑
iXiλα−1e−βλ

∝ λn+α−1e−(
∑
iXi+β)λ.

So λ|X1, X2, · · · , Xn ∼ Gamma(α∗, β∗) with α∗ = n+ α, β∗ =
∑

iXi + β.
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