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1. False Discovery Rate vs. Family-Wise Error Rate.

Suppose that we are testing some number of hypotheses. We are making decisions
according to some unknown decision rule, where a discovery is indicated by a decision
of 1 and no discovery is indicated by a decision of 0.

(a) Prove that 1{at least one false discovery} ≥ FDP, where FDP denotes the false
discovery proportion.

Solution: If 1{at least one false discovery} = 0, then no false discovery has
been made, in which case the FDP is clearly 0. If 1{at least one false discovery} =
1, then there is at least one false discovery, so FDP = # false disc.

#discoveries
, but since

the number of discoveries is at least as big as the number of false discoveries,
FDP ≤ 1.

(b) Prove that the family-wise error rate (FWER), i.e., the probability of making at
least one false discovery, is at least as big as the false discovery rate (FDR):

FWER ≥ FDR.

Solution: Due to monotonicity of expectations, we take expectations on both
sides of the inequality from part (a) to get:

E[1{at least one false discovery}] ≥ E[FDP] =⇒ FWER ≥ FDR.

(c) Suppose we want to test possibly infinitely many hypotheses in an online fashion.
At time t = 1, 2, . . ., a p-value Pt arrives, and we proclaim a discovery if Pt ≤ αt,
where αt =

(
1
2

)t
α. Does this rule control the FWER under α? Give a proof or

counterexample.

Solution: We use the usual union-bound argument:

FWER ≤
∑
t∈nulls

P(Pt ≤ αt) =
∑
t

(
1

2

)t
α = α.

Therefore, the rule does indeed control the FWER.

(d) Does the rule from part (c) control the FDR under α?



Solution: From part (b), we know that FDR ≤ FWER, so if the FWER is
under α, then so is the FDR.

2. Decision Theory: Computing and Minimizing the Bayes Risk

For the following two parts, derive the decision procedure δ∗ that minimizes the Bayes
risk, for the given loss function. That is, provide an expression for

δ∗ = argmin
δ

R(δ)

where the Bayes risk R(δ) can be written out as

R(δ) = Eθ,X [`(θ, δ(X))] = EX [Eθ[`(θ, δ(X)) | X]].

Hint. One strategy to find the decision rule that minimizes the Bayes risk is based on
the following rationale. For any given value of the data, X = x, the quantity δ(x) is
simply a scalar value. Suppose, for any given value of X = x, we can find the scalar
value δ∗(x) = a∗ ∈ R such that

a∗ = argmin
a∈R

Eθ[`(θ, a) | X = x]

(that is, a∗ is the scalar value that minimizes the Bayes posterior risk for this particular
value of X = x). Then, the rule given by this computation of δ∗(x) (for each value
of X = x) must also be the one that minimizes the Bayes risk, which just takes an
expectation over all possible values of X. This is sometimes referred as a pointwise
minimization strategy.

(a) `(θ, δ(X)) = (1/2)(θ − δ(X))2 (squared-error loss)

Solution: Following the pointwise minimization strategy, for any particular
value of X = x we find the value a∗ = δ(x) that solves

a∗ = min
a∈R

Eθ[(1/2)(θ − a)2 | X = x].

To do this, we take the derivative with respect to a and set it to zero, since
f(a) = Eθ[(1/2)(θ − a)2 | X = x] is a convex function in a (try to prove this
as a quick exercise; see below for solution). Swapping the differentiation and
expectation operators and applying the chain rule gives

f ′(a) = Eθ[a− θ | X = x]

and setting the derivative to zero gives

f ′(a) = 0 =⇒ a∗ = E[θ|X = x].
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That is, for any particular value of X = x, we should take δ∗(x) = E[θ | X = x].
That means that the decision rule that minimizes the Bayes risk for the squared
error loss is δ∗(X) = E[θ | X], the posterior expectation (the expectation of the
posterior distribution)!

To show that f(a) is a convex function, for any a1, a2 ∈ R and t ∈ [0, 1], we
have that

f(ta1 + (1− t)a2) = Eθ[(1/2)(θ − [ta1 + (1− t)a2])2 | X = x]

≤ Eθ[(1/2)t(θ − a1)2 + (1/2)(1− t)(θ − a2)2 | X = x]

= tEθ[(1/2)(θ − a1)2 | X = x] + (1− t)Eθ[(1/2)(θ − a2)2 | X = x]

= tf(a1) + (1− t)f(a2)

where the second line due to the convexity of the function g(a) = (θ − a)2 and
monotonicity of expectations, and the third line is due to linearity of expecta-
tions.
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(b) `(θ, δ(X)) = 1[θ 6= δ(X)] (zero-one loss)

Solution: We use the same strategy as Part (a). For a given value X = x, we
assign δ∗(x) to be the value

argmin
a

Eθ∼P(θ|X=x)[1[θ 6= a]] = argmin
a

P(θ 6= a|X = x)

= argmin
a

(1− P(θ = a|X = x))

= argmax
a

P(θ = a|X = x)

= argmax
θ

P(θ|X = x).

That is, the decision rule that minimizes the Bayes risk for the zero-one loss
is δ∗(X) = argmaxθ P(θ | X) the posterior mode (the mode of the posterior
distribution).
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