
DS 102 Discussion 1
Wednesday, September 2, 2020

1. ROC Curves. In lecture we defined and discussed ROC curves, or “receiver operating
characteristic” curves. ROC curves plot the true positive rate (TPR) and false positive
rates (FPR) for a binary classifier at different decision thresholds. Recall that the TPR
and FPR are defined as:

TPR =
# true positives

# positives
, FPR =

# false positives

# negatives
,

where “true positives” are examples where the model made a positive decision and the
label was positive, and “positives” are examples where the label was positive.

In this exercise, we will consider the ROC curve on an example dataset. Let Y be the
label, X1, X2 be features, and consider the model function f(X1, X2) = 3X1 + 2X2 + 1.

Table 1: Example dataset
Y f(X1, X2) X1 X2

0 -1 -1 0.5
1 -0.5 -1 0.75
0 0 -1 1
1 1 0.2 -0.3
1 0.25 -0.25 0
0 0.25 -0.05 -0.3

(a) Plot the ROC curve for the model f(X1, X2) with respect to the label Y .

Solution: At a given decision threshold α, if f(X1, X2) > α, then the decision
is a positive classification, and if f(X1, X2) ≤ α, then the decision is a negative
classification. Since the model f(X1, X2) only takes five different values on this
dataset, only five different decision thresholds lead to different true and false
positive rates.

• α < −1: TPR = 1, FPR = 1

• −1 ≤ α < −0.5: TPR = 1, FPR = 2
3

• −0.5 ≤ α < 0: TPR = 2
3
, FPR = 2

3

• 0 ≤ α < 0.25: TPR = 2
3
, FPR = 1

3

• 0.25 ≤ α < 1: TPR = 1
3
, FPR = 0

• 1 ≤ α: TPR = 0, FPR = 0
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(b) Suppose that we can choose two decision thresholds α1 and α2, and for each data
example, we flip a coin to decide which decision threshold to use for that example.
Choose α1 and α2, and probabilities for using α1 and α2, such that in expectation,
the true positive rate is 1

3
and the false positive rate is 1

3
.

Solution: If we choose a decision threshold α1 = −0.5, the TPR is 2
3

and the
FPR is 2

3
. If we choose a decision threshold of α2 = 1.0, the TPR is 0 and

the FPR is 0. If for each data point, we choose the decision threshold α = α1

with probability 1
2

and α = α2 with probability 1
2
, then the expected TPR is

1
2
∗ 2

3
+ 1

2
∗ 0 = 1

3
. Likewise, the expected FPR is 1

2
∗ 2

3
+ 1

2
∗ 0 = 1

3
.

To see this calculation broken down explicitly:

Eα[TPR] =
Eα[
∑n

i=1 1(f(X i
1, X

i
2) > α)]∑n

i=1 1(Y i > 0)

=
1
2

∑n
i=1 1(f(X i

1, X
i
2) > α1) + 1

2

∑n
i=1 1(f(X i

1, X
i
2) > α2)∑n

i=1 1(Y i > 0)

=
1
2
∗ 2

3
+

1
2
∗ 0

3

=
1

3

Note that by choosing probabilities for using each decision threshold α1 and
α2, the expected TPR and FPR are a convex combination of the TPRs and
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FPRs of α1 and α2 individually.

(c) Is it possible to choose two decision thresholds α1, α2 and probabilities of using each
decision threshold such that the expected true positive rate is 1

3
, and the expected

false positive rate is 2
3
?

Solution: No, this is not possible for this dataset. No single threshold or
combination of two thresholds can achieve a false positive rate of 2

3
without

also increasing the true positive rate up to 2
3

(try it!). Specifically, any (TPR,
FPR) pair that is not a convex combination of the (TPR, FPR) pairs for single
thresholds (plotted on the ROC curve) cannot be achieved by choosing two
decision thresholds probabilistically.

2. Hypothesis Testing. As discussed in lecture, one can imagine different metrics for
quantifying how “good” a decision is. For example, we would like our decisions to have
both high true positive rate and low false positive rate. Our goal as statisticians is to
develop reasonable strategies for doing well on both metrics. In other words, how should
we pick a point on the ROC curve? Once we pick a point, how do we achieve it?

The Neyman-Pearson Lemma offers one solution. To be concrete, we focus on the case
of hypothesis testing. We call the probability of a false positive under null hypothesis
H0 the significance level α of a test, and we call the probability of a true positive under
the alternative hypothesis H1 the power of a test.

The Neyman-Pearson formulation prescribes the following point on the ROC curve: fix
a significance level you are willing to tolerate, then pick the point that maximizes power.
The Neyman-Pearson Lemma prescribes how to achieve this point:

Lemma (Neyman & Pearson, 1933) Suppose θ1 < θ0. For any significance level
α ∈ [0, 1], the following likelihood-ratio test maximizes power among all tests with level
at most α:

δ(x) =

Reject Null :
fθ0 (x)

fθ1 (x)
≤ η

Accept Null :
fθ0 (x)

fθ1 (x)
> η

where fθ0 , fθ1 are the likelihoods under the null and alternative distributions, respectively,
and η is the real value such that Pr(δ(X) = 1 | H0) = α.

Example. Suppose that you have a sample from a distribution with probability density
function fθ(x) = θxθ−1 where 0 < x < 1. You would like to design a test to discern
between the null hypothesis that θ = 4, and the alternative hypothesis that θ = 3.

(a) Derive the most powerful test for this problem such that the significance level is
less than α.
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Solution: Leveraging the Neyman-Pearson Lemma, we design a likelihood-
ratio test. The likelihood ratio has the form:

fθ0(X)

fθ1(X)
=

4x3

3x2
=

4x

3
.

Now we need to solve for η such that the significance level is α, or

Pr(x ≤ 3

4
η |H0) = α.

That is, we need ∫ 0.75η

0

fθ0(x)dx =

∫ 0.75η

0

4x3dx = α.

Solving for this gives
0.754η4 = α

which yields η = 4
3
α0.25.

(b) What is the power of the test, Pr(δ(X) = 1 | H1)?

Solution: Pattern matching from above, we need to calculate Pr(x ≤ α0.25 |H1).
More explicitly,

Pr

(
fθ0(X)

fθ1(X)
≤ η | H1

)
= Pr

(
4x

3
≤ 4

3
α0.25 |H1

)
= Pr(x ≤ α0.25 |H1)

=

∫ α0.25

0

3x2dx

= α
3
4
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