
DS 102 Data, Inference, and Decisions Fall 2019

Controls II
Lecturer: Gireeja Ranade

1 Dynamic Programming for Control

In the last lecture we looked at the model-free case of Q-learning. In that setting we did not have
any model of the world and instead tried to learn the best action by filling in a Q-function, which
is a table denoting the value of all state-action pairs.

In a lot of settings however we have access to a model of the world that gives us some information
about how actions impact state transitions. In this lecture we look at this model-based setting. In
the model-based setting we are interested in the following quantities at a given time k:

• A state: xk ∈ Rn. For example, xk could be the position and velocity of a car in two dimen-
sional space, in which case n = 4.

• An action: uk ∈ Rd. Keeping with the car example this could be the acceleration and the
angle of the steering wheel of the car, in which case d = 2.

• A state transition function: xk+1 = f(xk, uk). In the car example the function would compute
where the car would be at the next timestep given the current position, velocity, acceleration
and steering direction. The function f can either be deterministic or stochastic, for example
there might be some amount of external random influence on the car such as the wind or the
quality of the road that would impact the next state of the car.

• A cost function: ck(xk, uk). For example, the cost function might be based on how far the car
deviates from a specific trajectory, and how much the car is accelerating.

Within this setting we are interested in minimizing the running cost over the N timesteps during
which we run:

J(x0) =
N∑
k=0

ck(xk, uk).

In other words we want to find

J∗(x0) = min
u0,u1,...uN

J(x0)

= min
u0

{
ck(x0, u0) + min

u1,u2,...,uN

N∑
k=1

ck(xk, uk)

}
= min

u0

{ck(x0, u0) + J∗(f(x0, u0))} .

1-1



Lecture 19: Controls II 1-2

The function J is often called the cost-to-go since it specifies the cost starting from our current
state. The above expression is reminicent of the Bellman equations from Lecture 18, and ideally we
would like to find the optimal cost-to-go through dynamic programming. Unfortunately the fact
that the state and action space are infinite in the number of possible elements, and the fact that
the function f can be arbitrarily complex means that we can’t solve this without specializing the
problem.

2 Linear Systems

A class of models that have found broad applicability within controls are linear systems. Linear
systems limit what the class of function f can be such that we can solve the dynamic programming
problem above in a tractable fashion. While the assumptions that we are going to make on f will
restrict what kind of problems we can express, it’s worth noting that linear systems are often used
in the real world. This is in large part because we can approximate a nonlinear system with a
different linear system at every timestep k. Using this method of linearization allows us to closely
approximate a large class of nonlinear systems while keeping the tractability of linear systems1.

A linear system is a setting in which the state transition function f can be represented as

xk+1 = Axk +Buk + wk,

where A ∈ Rn×n, B ∈ Rn×d, and wk ∈ Rn is random Gaussian noise. Furthermore assume that the
cost function has the form

ck(xk, uk) = Qx2k +Ru2k for k < N,

cN (xN , uN ) = Qx2N .

For the remainder of these notes we make the further simplifying assumption that everything is a
scalar (n = 1 and d = 1), and that there is no noise2. This is mostly to simplify the proofs, but
it’s worth noting that our analysis would be valid for arbitrary n and d with a few linear algebraic
tweaks.

We wish to find a way to compute the controller uk that will give us the optimal cost-to-go J∗(x0)
in this setting. First we’ll show that the optimal cost-to-go at time k can be written as

J∗(xk) = Kkx
2
k,

1The details of linearization are beyond the scope of this lecture but it’s good to keep this idea in the back of your
mind as we delve deeper into linear systems.

2The no-noise condition differs from the lectures but the result is identical, we just don’t need to worry about expec-
tations here.



Lecture 19: Controls II 1-3

where

Kk = Q+

(
Kk+1 −

K2
k+1B

2

K2
k+1B

2 +R

)
A2 for k < N,

kN = Q.

We show this by induction, starting from the end-state. It’s clear the base-case is true by definition
since

J∗(xN ) = Qx2N .

Now assume the identity holds for time k+1, we want to show that it also holds at time k. Writing
down the cost-to-go at time k and expanding it out gives us:

J∗(xk) = min
uk

{
Qx2k +Ru2k + J∗(Axk +Buk)

}
= min

uk

{
Qx2k +Ru2k +Kk+1(Axk +Buk)

2
}
,

where we have used the assumption that the identity holds for the second equality. Now taking the
derivative with respect to uk and setting it to 0 gives us that the minimizer u∗k is:

2Ru∗k + 2BKk+1(Axk +Bu∗k) = 0

=⇒ u∗k = − Kk+1AB

R+Kk+1B2
xk.

Substituting the value of u∗k into the equation for J∗(xk) and rearranging gives us our result. Now
we note that we now also have an optimal controller at each timestep u∗k. Hence the algorithm to
solve this linear control problem is as follows:

1. Starting from the last timestep and moving backward compute and save all Kk using Kk+1.

2. Start the linear system and at each state compute

Lk = − Kk+1AB

R+Kk+1B2

using the saved value Kk+1.

3. Play the input u∗k = Lkxk to obtain the next state xk+1

4. Repeat until we reach timestep N .


	Dynamic Programming for Control
	Linear Systems

