
DS 102 Data, Inference, and Decisions Fall 2019

Lecture 13: Causal Inference
Lecturer: Peng Ding

1 Motivation

Causality is not commonly covered in data science or statistics courses. Instead we often only talk
about correlation instead of causation. That is, we often only talk about the association between
random variables. But correlation is often not enough. For example, there is a strong correlation
between the amount of chocolate consumed and the number of Nobel prize winners in any given
year, but this in no way implies that one causes the other. But then if correlation is not enough to
imply causation, what is?

1.1 Regression and Causal Inference

Let’s begin by considering the simplified setting of linear regression. In linear regression we observe
datapoints (x1, y1), (x2, y2) . . . , (xn, yn) where xi ∈ Rd and yi ∈ R. Furthermore we assume that the
outputs are related to the inputs according to the following linear equation

yi = β0 + β1xi1 + . . .+ βdxid + ε,

where each βj is an unknown parameter and ε is a zero-mean random variable. From this we can
also write that

E[yi|xi1, . . . , xid] = β0 + β1xi1 + . . .+ βdxid.

It is immediately apparent that changing the value of xi1 has an effect on the value of yi. So it
seems intuitive to interpret β1 as telling us what “causal effect” the value of xi1 has on yi.

In the next section we will more precisely define what we mean by a causal effect. There are
multiple frameworks used to define what a causal effect means. The one we will use is the potential
outcomes framework by Jerzy Neyman.

2 Randomized Experiments

We’ll first consider the simpler setting of an experiment where we are interested in determining
the causal effect of a treatment on the outcome of the experiment. Furthermore, we’ll start by
discussing the idealized setting where we get to randomly assign who gets the treatment and who
doesn’t. This is called a randomized experiment and is used in many different fields.
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• When the food and drug administration wishes to determine whether a drug should be ap-
proved or not they do so through a randomized controlled trial (RCT). In this setting the FDA
randomly assigns patients to take the new drug under trial while also randomly assigning the
rest of the patients to take a placebo. After awhile they then compare the outcome between
the patients that took the drugs and the ones that took the placebo.

• In social science there is a concept of a field experiment, in which a sub-population will
randomly be assigned a specific policy. Recently three economists from MIT and Harvard
won the Nobel prize for conducting field experiments in developing countries to determine
the effectiveness of various policies in reducing poverty.

• Within technology companies A/B tests, such as tests that determine whether a specific ad
placement leads to increased purchases can be seen as a randomized experiment.

In the context of randomized experiments we have units i = 1, 2, . . . , n. Each unit either receives
the treatment or the control, where zi = 0 for the control and zi = 1 for the treatment. We then
indicate by yi the outcome observed by unit i. For example i could be the index of patients, yi could
be an indicator on whether the patient gets better or not, and zi = 1 could indicate that the patient
was assigned to take the drug, while zi = 0 would indicate that they were assigned the placebo.

So far we have only used notation already available within classical statistics. However we now
introduce the concept of potential outcomes yi(1) and yi(0) which can be read as the outcome that
would have happened if we had given the treatment to unit i and the outcome had we given the
control to unit i respectively.

Given this new notation we can now consider the individual causal effect

τi = yi(1)− yi(0).

In practice we have no hope of finding the individual causal effect as exemplified in Table 13.1
where we see that we only get to observe one outcome, while the other potential outcome, called
the counterfactual, will forever remain unobserved.

Unit Z Y(1) Y(0)
1 1 ?
2 1 ?
3 0 ?
...

...
...

...
n - 1 0 ?

n 1 ?

Table 13.1: An example of an experiment where a checkmark represents an observed outcome
while a question mark represents a counterfactual.

So we have no hope on an individual basis but can we do better on average? That is can we
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estimate the average treatment effect (ATE)

τ = E[Y (1)− Y (0)]

= E[Y (1)]− E[Y (0)].

2.1 Inference for τ ?

Without randomization causal inference is hard. For example say we were investigating whether
smoking causes lung cancer. In this setting yi = 1 if a person in our dataset contracts lung cancer
within their lifetime, while yi = 0 if they do not. Were we to simply take the empirical mean of the
outcomes for smokers and non-smokers as our estimates of E[Y (1)] and E[Y (0)] respectively that is

τ̂ = Ê[Y (1)]− Ê[Y (0)]

=
1

n1

∑
i:zi=1

yi −
1

n0

∑
i:zi=0

yi.

Where n1 is the number of smokers in our dataset and n0 is the number of non-smokers. However,
if people who tend to smoke are somehow fundamentally different from those who don’t, then the
above estimate will be biased. For example, smokers might just naturally be more prone to lung
cancer, this corresponds to the case shown in Table 13.2.

Unit Z Y(1) Y(0)
1 1 1 1
2 1 1 1
3 1 1 1
...

...
...

...
n - 1 0 0 0

n 0 0 0

Table 13.2: A setting where the treatment Z is not independent from the outcome Y (1) and Y (0).

We will further explore the smoking example later in the lecture, however the key takeaway here is
that it is desirable to have the treatment be independent from the outcome when estimating treat-
ment effect. One simple solution is to randomly assign treatments in a randomized experiments,
notationally this gives us that

Z ⊥⊥ {Y (1), Y (0)}.

This is not a trivial fact since in most cases

Z��⊥⊥Y,

as in the example shown in Table 13.2. With randomization we are able to further simplify the
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average treatment effect to

τ = E[Y (1)]− E[Y (0)]

= E[Y (1)|Z = 1]− E[Y (0)|Z = 0]

= E[Y |Z = 1]− E[Y |Z = 0],

where we have used our independence assumption in the second equality. In this case the naive
estimator that we developed at the beginning of this section is unbiased. We can rewrite this
estimator as

τ̂ = ŷ(1)− ŷ(0)
with

ŷ(1) =
1

n1

∑
i:zi=1

yi

ŷ(0) =
1

n0

∑
i:zi=1

yi,

where n1 is the number of units assigned the treatment and n0 is the number of units assigned the
control. Since ŷ(1) and ŷ(0) are independent we have that

V(τ̂) =
V(Y (1))

n1
+

V(Y (0))

n0
.

Hence we can estimate the variance of τ as

v̂ =
s21
n1

+
s20
n0
,

where s21, s
2
0 are the corresponding sample variances. Approximating the distribution of τ̂ as a

normal distribution1 gives us a 95% confidence interval of

τ̂ ± 1.96
√
v̂.

2.2 Covariates

Often we have covariates xi associated with each unit which we would like to use to improve the
efficiency of our data. For example in an FDA randomized control trial xi might include the age of
the patient, their medical history, and where they live.

In this setting we can use the dataset of units assigned to the treatment group

{(xi, yi)}zi=1

to train a predictor2: µ̂1(x) which will output an estimated outcome when the treatment is applied
to a unit with covariates x. We can also use the dataset of units assigned to the control group

{(xi, yi)}zi=0

1The central limit theorem tells us that this is a valid thing to do asymptotically.
2In practice this can be any model, from a linear regression model to a neural network.
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to build another predictor: µ̂0(x) which will output an estimated outcome when the treatment isn’t
applied to a unit with covariates x. We then use the two predictors to get the following estimator
of the average treatment effect

τ̂ =
1

n

[∑
zi=1

yi +
∑
zi=0

µ̂1(xi)

]
− 1

n

[∑
zi=1

µ̂0(xi) +
∑
zi=0

yi

]
.

Intuitively we are using the two predictors to fill in the missing entries in a table similar to Ta-
ble 13.1. We are then using these predictions along with our real observed data to estimate the
ATE.

In his PhD thesis entitled “Essays on Causal Inference in Randomized Experiments” Winston Lin
shows that using linear regressors to estimate the counterfactuals does indeed lead to a better
estimator of the ATE. Although the discussion is quite technical so we refer the interested reader to
Winston Lin’s thesis.

3 Non-randomized studies

Randomized studies aren’t always possible. For example we can’t force people to smoke or to go to
graduate school so we would like to handle non-randomized studies, also known as observational
studies, in a principled manner. In non-randomized studies we have

Z��⊥⊥{Y (1), Y (0)}.

This setting is often called the Rubin Causal model or the Neyman-Rubin model. As we saw in the
last section we can’t use the naive empirical mean estimator in this setting, for example applying
this estimator to the data shown in Table 13.2 would lead to a highly biased estimate.

This is a major reason as to why the debate about whether or not smoking causes lung cancer was
so hard to resolve. For example, Ronald Fisher, a famous statistician, believed smoking did not
cause lung cancer, despite the fact that there was a clear correlation. He instead posited there was
a hidden gene that made people more likely to smoke while also increasing the probability they
would contract lung cancer. In other words, his theory was that there was a common unobserved
cause to both lung cancer and propensity to smoke. We call any such unobserved cause that effects
both the variables Z and Y a confounder. While we now know that smoking does indeed cause
lung cancer, observational studies are still approached with caution. Even today, people will be
very suspicious of observational studies since there can always be some unobserved confounder.

One way to get around the issue presented by non-randomized studies is to assume we’ve collected
enough covariates such that

Z ⊥⊥ {Y (1), Y (0)}|X

this assumption has many names. In epistemology it is called the unconfoundedness assumption, in
statistics it is called ignorability and in economics it is called selection on observables.
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X

Z Y

Figure 13.1: A causal graphical model showing the unconfoundedness assumption. Here we see
that all common dependencies of Y and Z are captured by the covariates X.

Under ignorability we have

τ = E[Y (1)]− E[Y (0)]

= E[E[Y (1)|X]]− E[E[Y (0)|X]]

= E[E[Y (1)|X,Z = 1]]− E[E[Y (0)|X,Z = 0]]

= E[E[Y |X,Z = 1]]− E[E[Y |X,Z = 0]].

Where we have used the ignorability assumption for the third equality. For a more concrete example
let’s consider the case where the covariate consists of a single discrete number X ∈ {1, 2, . . . ,K}.
For example X could indicate whether someone comes from a specific region. Assuming that we
have ignorability given X then we have

τ = E[E[Y |X,Z = 1]]− E[E[Y |X,Z = 0]]

=

K∑
k=1

E[Y |X = k, Z = 1]P(X = k)−
K∑
k=1

E[Y |X = k, Z = 0]P(X = k).

We will see how to use this formula in the next lecture.
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