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In the last lecture, we introduced the idea of Gaussian mixture models (GMMs). In this lecture,
we will introduce the Expectation-Maximization Algorithm as a way of performing unsupervised
learning to learn GMMs from data.

1 Gaussian Mixture Models

Suppose we have a random variable Y with an unknown distribution P(Y ) that may not fit into
any known class of distributions that we are familiar with. However, we would like to come up
with a model of the distribution that we can interpret and sample from easily, that closely matches
the distribution of the random variable Y . One common model that is simple to use yet powerful
enough to represent complex distributions are mixtures of Gaussians as illustrated in Figure 9.1.

(a) (b)

Figure 9.1: The probability density function of Y and the GMM that describes it.

To model P(Y ) as a mixture of Gaussians we assume that there is more structure underlying the
random variable. In particular, we assume that there is a hidden random variable X taking values
in i = 1, 2, ..., d such that:

P(Y |X = i) = N (µi, σ
2
i )

Thus, P(Y ) =
∑d

i=1 πiN (Y ;µi, σ
2
i ), where πi = P(X = i), and we model P(Y ) as a mixture of d

Gaussians.

Example 9.1. For the distribution showed in Figure 9.1, π1 = 0.1, π2 = 0.5, π3 = 0.2, π4 = 0.2.
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Looking at GMMs from a Bayesian perspective, one can think of πi as the prevalence that Y came
from the normal with mean µi and variance σ2i .

2 Expectation-Maximization

In the previous section we discussed Gaussian Mixture models and their ability to model complex
distributions. In this section we will present a method of learning the parameters of a GMM µi, σ

2
i ,

and πi from data. One of the biggest problems with learning Gaussian mixture models is that simply
maximizing the likelihood of the data does not work since we typically only observe y1, ..., yn, and
not the hidden variables x1, ..., xn.

If we knew the value of xj for each yj we could write the likelihood of the data as:

P(yj , xj |θ1, ..., θd, π1, ..., πd) = P(xj |π1, ..., πd)P(yj |xj , θ1, ..., θd) =
d∏
i=1

(πiN (yj ; θi))
I(xj=i),

where θi = (µi, σ
2
i ). The log likelihood of all of the data would therefore be given by:

`(y, xj ; θ1, ..., θd, π1, ..., πd) =
n∑
j=1

d∑
i=1

I(xj = i)(log(πi) + log(N (yj ;µi, σ
2
i )).

which we could maximize over all θ1, ..., θd and π1, ..., πd.

On the other hand, if we knew all the values of θ1, ..., θd and π1, ..., πd we could find the posterior
distribution over Xj for each data point yj . This posterior is given by:

P(Xj = i|yj) =
πiN (yj ;µi, σ

2
i )∑d

k=1 πkN (yj ;µk, σ
2
k)

Therefore, we have a chicken and egg scenario. Given data points y1, ..., yn, if we knew x1, ..., xn
we could find the values of the parameters of our GMM, (πi, µi, σ2i ) for i = 1, ..., d, and if we knew
the values of the parameters of our GMM, (πi, µi, σ2i ) for i = 1, ..., d, we could predict x1, ..., xn.

To solve this problem, we introduce the Expectation-Maximization Algorithm or EM algorithm for
short. There are 3 main ideas behind the EM Algorithm:

1. Randomly initialize θi and πi.

2. Given fixed θi and πi, for each data point yj approximate the probability that yj comes from
Gaussian i, denoted Zj(i) = P(Xj = i|yj).
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3. Given fixed distributions Zj find the values of θi and πi that maximize the expected likelihood
of the data (over the distributions Zj(i)):

(π∗, θ∗) = argmax
π1,...,πd,θ1,...,θd

EZ [`(y; θ1, ..., θn)]

Since E[I(xj = i)] = Pr(Xj = i|Yi) = Zj(i), this simplifies to:

(π∗, θ∗) = argmax
π1,...,πd,θ1,...,θd

n∑
j=1

d∑
i=1

Zj(i)(log(πi) + log(N (yj ;µi, σ
2
i ))

4. Iterate between the two sub-problems until convergence.

Remark 9.2. The EM algorithm can be shown to maximize the lower bound on the log-likelihood of
the data at each iteration, meaning that as the algorithm runs we have more and more confidence
that the log-likelihood of the data is improving.

We now outline the EM algorithm with unknown µi, σ2i , πi for a mixture of d Gaussians given
y1, ...yn.

Algorithm 1 Expectation-Maximization Algorithm for Gaussian Mixture Models
Input: Data: y1, ..., yn, Number of Gaussians in the mixture d, number of iterations r
Output: (πi, µi, σ2i ) for i = 1, ..., d.
Randomly Initialize (πi,0, µi,0, σ

2
i,0) for t = 1 to r do

Expectation Step: for j = 1 to n do
for i = 1 to d do

Zj(i)←
πi,t−1N (yj ;µi,t−1,σ

2
i,t−1)∑d

k=1 πk,t−1N (yj ;µk,t−1,σ
2
k,t−1)

end
end
Maximization Step: for i = 1 to d do

Ni,t ←
∑n

j=1 Zj(i).
µi,t ← 1

Ni,t

∑n
j=1 Zj(i)yj .

σi,t ← 1
Ni,t

∑n
j=1 Zj(i)(yj − µi,t)2.

πi,t ← Ni,t

n .

end
end

Note that the update for µi and σ2i are both the maximizers of the expected likelihood using the
straightforward derivation we have seen in previous lectures and discussions. The update for πi,
however, requires maximizing the expected likelihood while constraining

∑d
i=1 πi = 1. This deriva-

tion requires using solving a constrained optimization problem which is outside the scope of this
class.

Remark 9.3. Note that the EM algorithm can be very sensitive to the initialization, and is not
guaranteed to converge to the same solution from any initialization.
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