
DS 102 Data, Inference, and Decisions Fall 2019

Lecture 8: Bayesian Hierarchical Models I
Lecturer: Ramesh Sridharan

1 Parameter Estimation

Say we observe data y1, y2, . . . , yn. Let’s assume the datapoints are independently and identically
distributed (i.i.d.) from the same distribution. The datapoints are independently distributed if

P

(⋂
i∈J

yi

)
=
∏
i∈J

P(yi)

for all J ⊆ {1, 2, . . . , n}. The datapoints are identically distributed if

yi ∼ P(θ),

for all i ∈ {1, 2, . . . , n}, where P is some family of distributions and θ ∈ Rd is the parameter for
that distribution. For example we could have

yi ∼ N (µ, σ2),

for all i ∈ {1, 2, . . . , n}. Here θ = (µ, σ2)>.

Let’s say we don’t know θ, or a subset of θ’s coordinates. In previous lectures we looked at hy-
pothesis testing which we can use to test specific conditions on θ. For example, in the case where
we know that the observed data comes from a Gaussian distribution with either mean µ = 0 or
µ = 5 we might conduct a hypothesis test to differentiate between the two cases. Or we might try
to determine if µ > 1 or not.

However, instead of simply testing whether conditions on θ are true or not, we might want to
directly estimate the parameter instead. You saw this idea being partially developed in Lectures 6
and 7, we will further expand upon this idea in this Lecture. From here on we will denote any
estimator of a parameter by putting a hat above it. For example, an estimator of θ will be θ̂.

2 Frequentist Estimation

One simple frequentist estimator comes about by considering the likelihood function over all our
data: L(θ) = P(y1, y2, . . . , yn; θ)1. We can think of the likelihood as the probability that the data

1Note that we use a semi-colon to indicate a specific value of θ. It has much the same meaning as the vertical bar
used for conditioning, except that it implies we think of θ as a fixed unknown variable instead of a random variable.
Although the two symbols are often used interchangeably.
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was generated by a distribution assuming that it has its parameter set to θ. One natural thing to
do would be to find the value that maximizes this probability. We call this value the maximum
likelihood estimate (MLE) and denote it by θ̂MLE . We usually proceed as follows when doing
maximum likelihood estimation

1. We then define a likelihood model P(y; θ) where y will be an observed datapoint and θ is
a fixed unknown parameter. Note that this is often a subjective (albeit informed) decision.
We very rarely know the true distribution from which the data comes from and must instead
approximate to the best of our ability.

2. We collect our data y1, . . . , yn.

3. Finally we attempt to better understand the world by finding the maximum likelihood esti-
mate (MLE). The process involves the following steps:

(a) Calculate the likelihood function over all our data

L(θ) = P(y1, . . . , yn; θ) =
n∏
i=1

P(yi; θ),

where the second equality used the i.i.d assumption on the data.

(b) Take the log of the likelihood

`(θ) = logL(θ) =
n∑
i=1

logP(yi; θ).

This step isn’t compulsory but it usually significantly simplifies the next step.

(c) Find the MLE which is defined as

θ̂MLE = argmax
θ
L(θ) = argmax

θ
`(θ)

where the second equality used the fact that argmaxx f(x) = argmaxx g(f(x)) whenever
g is a strictly increasing function, and that the log is a strictly increasing function. As-
suming the likelihood function is well behaved we can find this maximum argument by
taking a derivative, setting it to 0, and solving for θ.

For concrete examples of maximum likelihood estimation look at Question 1 of Discussions 1 and
3.

3 Bayesian Estimation

Unlike frequentist estimation, in Bayesian estimation we treat the unknown parameter as a random
variable instead of a fixed (but unknown) quantity. Since θ is often reserved for fixed parameters we
will now denote our random parameter as x instead. Here the primary quantity of interest will no
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longer be the likelihood P(y1, y2, . . . , yn|x) but instead the posterior distribution P(x|y1, y2, . . . , yn).
The posterior can be thought of as our belief on the value of our parameter x given that we have
observed our data. Now once again a natural estimator comes about by maximizing the posterior
probability, this is called the maximum a posteriori (MAP) estimate and is denoted by x̂MLE . To
find the MAP estimate we go through the following steps

1. Define a likelihood model P(y|x; θy) where x is the unknown parameter (equivalent to θ in
the frequentist setting), y is an observed datapoint, and θy is a known hyperparameter that
we set.

2. Define a prior distribution P(x; θx) on our unknown parameter x. Here θx is also a known
hyperparameter that we set. As in the frequentist setting there is a lot of subjectivity in the
last two steps, we almost never know the true prior nor the true likelihood but we hope to
make an informed decision. It’s also worth noting that our hyperparameters θx and θy can
also be considered as part of the subjective task of picking the right model to represent our
prior and likelihood.

3. Collect our data y1, . . . , yn.

4. Finally we attempt to better understand the world by finding the maximum a posteriori (MAP)
estimate. The process involves the following steps:

(a) Calculate the likelihood function over all our data

P(y1, . . . , yn|x; θy) =
n∏
i=1

P(yi|x; θy),

where the second equality used the i.i.d assumption on the data.

(b) Write down the posterior distribution, this can be done through Bayes’ theorem

P(x|y1, y2, . . . yn) =
P(y1, y2, . . . , yn|x; θy)P(x; θx)

P(y1, y2, . . . , yn)
=

∏n
i=1 P(yi|x; θy)P(x; θx)

P(y1, y2, . . . , yn)
.

(c) Find the MAP which is defined as

x̂MAP = argmax
x

P(x|y1, y2, . . . yn) = argmax
x

n∏
i=1

P(yi|x; θy)P(x; θx)

where the second equality uses the fact that argmaxx f(x)/c = argmaxx f(x) for a pos-
itive constant c, and that P(y1, y2, . . . , yn) is a positive constant with respect to x. As-
suming the posterior is well behaved enough we can take its derivative with respect to
x, set it to 0 and solve for x to find the MAP estimator, you may also use the log trick of
Section 2 if it facilitates calculation.
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3.1 Example: Beta prior and Binomial likelihood

As an example of computing the posterior distribution consider the situation where we have y ∼
Binom(n, x), where n is fixed, and x ∼ Beta(r, s) for fixed and known r > 0 and s > 0. Our
hyperparameters in this case are θy = n and θx = (r, s)>. In that case our prior is

P(x) =
Γ(r)Γ(s)

Γ(r + s)
xr−1(1− x)s−1,

where Γ is the gamma function defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx.

You can think of the gamma function as the generalization of the factorial function to all real
numbers, although for the purpose of this example it will only play a relatively minor role since it
will only serve to normalize the distribution. Then we can express the prior distribution on x as

P(x; r, s) =
Γ(r)Γ(s)

Γ(r + s)
xr−1(1− x)s−1

the likelihood as

P(y|x;n) =

(
n

y

)
xy(1− x)n−y.

Now let’s try to find the posterior distribution of x by using Bayes’ theorem,

P(x|y) =
P(y|x;n)P(x; r, s)

P(y)

=

(
n

y

)
Γ(r)Γ(s)

Γ(r + s)

xy(1− x)n−yxr−1(1− x)s−1∫ 1
0 P(y|z;n)P(z; r, s)dz,

where we have expanded the denominator using the fact that P(y) =
∫
P(y|x)P(x)dx when x is a

continuous random variable, and we have expanded the definition of the likelihood and the prior
in the numerator. This quickly got out of hand with many hard to evaluate terms! But one key
observation we can make is that what we really only care about the shape of the posterior here not
its scale. This is because

1. we are ultimately trying to find the argmax (with respect to x) which doesn’t change as we
scale the posterior by a constant,

2. if we can show that a function has the same shape as a known distribution, it can only
correspond to that distribution once we scale it down so it integrates to 1 (see Figure 8.1).
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Figure 8.1: Different scalings of some distribution P(x). Even though only one of these curves
integrate to 1 we can see that they all uniquely identify the same distribution since they all have
the same shape.

With this observation in mind we can discard any scaling term that doesn’t depend on x, hence

P(x|y) ∝x xy(1− x)n−yxr−1(1− x)s−1

= xy+r−1(1− x)n−y+s−1,

where ∝x means ”proportional to” when all variables other than x are treated as constants. But this
is simply an unnormalized version of Beta(y + r, n − y + s). So our posterior belongs to the same
family of distributions as our prior and can simply be computed by adding the number of successes
and failures in the binomial trial to the prior hyperparameters.

When the prior and posterior belong to the same family of distributions, we say that they are
conjugate distributions, with the prior being called a conjugate prior. As we will see, we can’t always
have conjugate distributions in which case the posterior becomes much harder to compute.

See Discussion 4 for further details and intuition on this specific prior/likelihood pair. In particular
we look at how to find the MAP estimate given the posterior.

3.2 Example: Gaussian priors and Gaussian likelihood

Let’s look at a continuous example of conjugate distributions. We have y ∼ N (x, σ2) where σ2 is
fixed and known, x ∼ N (µx, σ

2), and µx is fixed and known. Then the prior on x is given by

P(x;µx, σ
2) =

1√
2πσ2

exp

(
−(x− µx)2

2σ2

)
.
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The likelihood is given by

P(y|x;σ2) =
1√

2πσ2
exp

(
−(y − x)2

2σ2

)
.

Computing the posterior gives us

P(x|y) ∝x exp

(
−(y − x)2 + (x− µx)2

2σ2

)
= exp

(
−2(x2 − xy − xµx) + y2 + µ2x

2σ2

)
= exp

(
−2(x2 − xy − xµx)

2σ2

)
exp

(
−y

2 + µ2x
2σ2

)
∝x exp

(
−x

2 − x(y + µx)

2σ2/2

)
= exp

(
−x

2 − x(y + µx) + (y + µx)2/4− (y + µx)2/4

2σ2/2

)
∝x exp

(
−x

2 − x(y + µx) + (y + µx)2/4

2σ2/2

)
= exp

(
−(x− (y + µx)/2)2

2σ2/2

)
.

So the posterior distribution is also Gaussian of the form N (y+µx2 , σ
2

2 ). So we once again have a
conjugate prior.

3.3 Example: Non-conjugate priors

Let’s look at a situation where our priors aren’t conjugate. Here, assume y ∼ N (x, σ2) where σ2 is
fixed and known, and the pdf of x is given by

P(x) =

{
cos(x), x ∈ [0, π2 ]

0, otherwise.

Computing the posterior distribution gives us

P(x|y) ∝x

{
exp

(
1

2σ2 (x2 − 2xy)
)
cos(x), x ∈ [0, π2 ]

0, otherwise.

Here we see that our posterior doesn’t correspond to any distribution that we know of. This isn’t
a huge issue if we just want to compute the MAP since we can just take the derivative of this
expression. However, if we wanted to compute some other quantity such as the mean of the
posterior, we would need to evaluate P(y) which involves computing an integral with no closed
form. In future lectures we will see how to handle this by sampling.
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4 Gaussian Mixture Models

We now turn to a particularly ubiquitous Bayesian model, the Gaussian mixture model (GMM). We
will look at the model in its full generality in the next lecture but for now let’s consider a simple
scenario.

Assume we have a dataset of i.i.d heights y1, y2, . . . , yn. We could model the distribution of heights
as a simple Gaussian, however we know that the sex of the person plays a big role in determining
their height. Hence a better way to model this situation might be as a mixture of two Gaussian
distributions.

Given that our dataset only includes height information (and not the sex of the participants) we
instead treat their sex as a hidden binary random variable xi. Where xi = 0 if the participant is
female and xi = 1 if they are male. These types of unseen variables are called latent variables. We
can put a Bernoulli prior on the sex x of any participant as

π0 = P(x = 0)

π1 = P(x = 1).

And then the likelihood on any datapoint y is given by

P(y|x) =

{
N0 = N (y;µ0, σ

2), x = 0

N1 = N (y;µ1, σ
2), x = 1.

where µ0, µ1, σ2 are all fixed and known. Then the posterior is given by

P(xi|yi) =
(π1N1)

x(π0N0)
1−x

πN1 + (1− π)N0
.

An example of such a GMM distribution is shown in Figure 8.2. In the next lecture we will look at
the case where the Gaussian parameters are unknown and how we can estimate them.

Figure 8.2: An example GMM where π0 = 0.2, π1 = 0.8, µ0 = 120, µ1 = 180, and σ = 11.
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