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1 Uniformity of Null P-values

We return to the concept of p-values in order to prove one of their important properties.

First we recall the definition of the p-value. Let S ∼ Pθ be the observed data set, and let T (S)
be some real-valued summary statistic obtained from S. For example, S could be a set of n i.i.d.
samples X1, . . . , Xn, and T (S) could be their average 1

n

∑n
i=1Xi.

In the previous lecture, we assumed that the null hypothesis was θ ∈ Θ0, and that the alternative
was θ ∈ Θ1, for some arbitrary sets Θ0 and Θ1. In this section, we assume Θ0 = {θ0} and Θ1 = {θ1},
i.e. there is a single null and a single alternative distribution.

As usual, we assume that we can compute the distribution of T (S0), where S0 ∼ Pθ0 . Then, the
p-value is defined as:

P := P(T (S0) ≥ T (S) | T (S)),

where the “hallucinated” sample S0 is independent from the observed sample S. We proclaim a
discovery if P is less than or equal to the significance level α.

Denote by F (·) the tail CDF of T (S0):

F (t) = P(T (S0) > t).

Notice that the p-value can be written as

P = F (T (S)),

where T (S) is the test statistic computed from data.

Suppose that the ground truth is null, that is S ∼ Pθ0 . Then, the p-value has a uniform distribution:

P(P ≤ u) = P(F (T (S)) ≤ u) = P(T (S) > F−1(u)) = F (F−1(u)) = u,

where we assume certain regularity condition, like F is invertible, and T (S) has a continuous
distribution. The second equality follows because F−1 is a monotone decreasing transformation,
due to F being decreasing. The second to last equality uses the assumption that the ground truth
is null. If the ground truth was alternative, we would have obtained the CDF of P at u to be
F−11 (F (u)) 6= u, where F1 is the tail CDF under the alternative.

It is important to remember that p-values are random variables, because they are equal to a de-
terministic function F applied to a random variable T (S), whose randomness comes from the
randomness in the data.

1-1



Lecture : Lecture 4: Online False Discovery Rate Control 1-2

If we assume that Θ0 is not a single point θ0, but a possibly larger set, we can show that the
distribution of p-values is dominated by a uniform P(P ≤ u) ≤ u. This property is sometimes
referred to as super-uniformity, and is enough to show that all multiple testing procedures we
consider in this class control FDR/FWER for arbitrary sets Θ0.

Given that null p-values are uniform, it is now clear why the simple decision rule of rejecting the
null if P ≤ α controls the probability of a false discovery under α (note that now we are talking
about a single test, not multiple testing). That is because

P(false discovery) = P(P ≤ α | ground truth is null) = α.

2 Online False Discovery Rate Control

Classical statistics, including the Benjamini-Hochberg (BH) algorithm, focused on a batch setting in
which we make decisions after all necessary data has already been collected. For instance, the BH
procedure needs the p-values for all hypotheses one wishes to test before making any discoveries.

In turns out that it is possible to construct procedures that make decisions sequentially in time,
while controlling the FDR at any given moment. In particular, these procedures allow performing
tests one after the other, and at any given time they only need information about past tests, and do
not require any knowledge about future tests, such as their number of the hypotheses they wish to
test. Even more remarkably, such methods can provide FDR control over a lifetime, for a possibly
infinite number of tests.

Figure 1.1: Illustration of offline versus online FDR control.

More formally, the setup of online FDR control is as follows. At every time t ∈ N, a new p-value
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Pt arrives. As soon as this p-value arrives, a decision has to be made of whether the corresponding
hypothesis should be rejected. Importantly, this decision does not depend on any future tests. More
precisely, online FDR algorithms determine an appropriate test level αt, dependent on the tests
from time 1 up to time t− 1, and reject the t-th hypothesis if Pt ≤ αt.

It is not clear how a procedure like BH would be adjusted to run in an online fashion. The Bon-
ferroni correction, on the other hand, could be adjusted. The main idea behind the Bonferroni
correction was to have individual test levels αi sum up to α. We can do this for infinitely many
p-values by picking a sequence {γi}∞i=1 such that

∑∞
i=1 γi = 1. If we set αi = γiα, we get FWER for

infinitely many tests. This procedure is sometimes referred to as alpha-spending. However, notice
that its construction necessarily implies that αi → 0 as i→∞. In other words, after a large enough
number of tests, we are very unlikely to make any discoveries.

Here is a glimmer of hope though: FDP is a ratio of two counts: the number of false discoveries,
and the total number of discoveries. We can make the ratio small in one of two ways - either by
making the numerator small, or by making the denominator big. We can make the denominator
big by making lots of discoveries.

The first online FDR algorithm was due to Foster and Stine and is called alpha-investing, to contrast
the difference with alpha-spending. The authors gave an economic interpretation to the algorithm,
which also transferred to more recent online FDR algorithms. The basic idea is as follows. When
initially setting the target FDR level, we give some “initial wealth” to the algorithm. For every test
we start, we “invest” some of the wealth into that test. If we don’t make a discovery, we end up
losing our investment. If, on the other hand, we do make a discovery (regardless of whether it’s
a true or false one), we get rewarded for that discovery and earn back some wealth. Online FDR
algorithms are constructed in a way that ensures we never run out of wealth, by never investing all
the wealth we have at a given moment.

A more recent (and slightly simpler) online FDR algorithm is due to Javanmard and Montanari and
is called LORD. We state the steps of this procedure below.

Algorithm 1 The LORD Procedure
input: FDR level α, non-increasing sequence {γt}∞t=1 such that

∑∞
t=1 γt = 1, initial wealth W0 ≤ α

Set α1 = γ1W0

for t = 1, 2, . . . do
p-value Pt arrives
if Pt ≤ αt, reject corresponding hypothesis
αt+1 = γt+1W0 + γt+1−τ1(α−W0)1{τ1 < t}+ α

∑∞
j=2 γt+1−τj1{τj < t},

where τj is time of j-th rejection τj = min{k :
∑k

l=1 1{Pl ≤ αl} = j}
end

Immediately we see that the LORD procedure is an online algorithm, as p-values Pt arrive at each
time step, and decisions about whether to accept or reject the corresponding hypothesis must also
be made at time step t. As discussed above, this is done by comparing Pt to a time-dependent
significance threshold αt.
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To gain some intuition, let’s take a closer look at the update step that determines αt+1 in every
round. The last term is a sum over all of the previous discovery declarations, indexed by j. Each
discovery gains α total wealth, and the γt+1−τj term in the sum serves to spread that wealth over all
future time steps. The first term can be thought as doing the same for a “borrrowed” initial wealth
W0, whereas the second term pays off that borrowing over time.

We’ll investigate this algorithm further in the next lecture, but for now there are two major take-
aways: (1) online control of the FDR is possible, and (2) there are in fact implementable algorithms
for achieving online FDR control arbitrarily far into the future!


