
DS102 - Midterm Review
Monday, 14th October, 2019

1. For each of the following, answer true or false.

(T / F) The Bayesian viewpoint favors algorithms that work on average over many
possible datasets, whereas the Frequentist viewpoint considers the data as fixed.

Solution: False, the Bayesian viewpoint takes the data as fixed, while the Frequen-
tist favors algorithms that work over many datasets.

(T / F) The logistic function fθ(x) = 1
1+e−θx

is not a linear function of x.

Solution: True, it clearly does not satisfy linearity of scalar multiplication or adi-
tivity in x.

(T / F) In the LORD Procedure, the longer it has been since the last discovery the
higher the amount of wealth you accrue.

Solution: False, with the LORD procedure, the longer it has been since the last
discovery, the less wealth you have.

2. Similar to homework 1 you once again find yourself at the state fair. This time, you
play a game that involves picking between two biased coins, C0 and C1, where you don’t
know anything about the bias of the coins. If the coin you pick lands on heads (we will
denote a heads by 1 and a tails by 0 from this point) you earn $5, otherwise you don’t
get anything. You decide you will play this game 10 times.

Let p0 = P(C0 = 1) and p1 = P(C1 = 1), let Xi ∈ {0, 1} indicate the number of the coin
you pick on the ith game, and let Yi ∈ {0, 10} be the random variable that indicates the
payoff you earn on the ith game where i ∈ {1, . . . , 10}.
(a) Compute E[Yi|Xi = 0] and E[Yi|Xi = 1] in terms of p0 and p1. Reminder: you get

$5 when a coin lands heads.

Solution:

E[Yi|Xi = 0] = 5P(Yi = 5|Xi = 0) + 0P(Yi = 0|Xi = 0) = 5p0

Similarly

E[Yi|Xi = 1] = 5P(Yi = 5|Xi = 1) + 0P(Yi = 0|Xi = 1) = 5p1



(b) Assuming you randomly pick a coin on the ith round such that each coin is equally
likely Xi ∼ Bern(0.5). Compute E[Yi] using the law of total expectation (also
known as the tower property). Reminder: the tower property states that E[Y ] =
E[E[Y |X]].

Solution:

E[Yi] = E[E[Yi|Xi]]

= P(Xi = 0)E[Yi|Xi = 0] + P(Xi = 1)E[Yi|Xi = 1]

= 0.5(5p0 + 5p1)

where we have used the distribution of Xi and the result from Part a in the last
equality.

(c) Now let’s say that you pick coin C0 on the first 5 rounds and coin C1 on the last 5
rounds (X1 = 0, X2 = 0, . . . , X5 = 0, X6 = 1, . . . X10 = 1). Let ci denote the value
of the coin you observe on the ith round (where a value of 1 indicates a heads and
a value of 0 indicates a tail). Write down the log likelihood of p0 and p1

logP(c1, c2, . . . , c10|p0, p1)

Solution:

logP(c1, c2, . . . , c10|p0, p1) =
10∑
i=1

logP(ci|p0, p1)

=
5∑
i=1

logP(ci|p0) +
10∑
i=6

logP(ci|p1)

=
5∑
i=1

log(pci0 (1− p0)(1−ci)) +
10∑
i=6

log(pci1 (1− p1)(1−ci))

=
5∑
i=1

ci log(p0) + (1− ci) log(1− p0)+

10∑
i=6

ci log(p1) + (1− ci) log(1− p1)

(d) Compute the Maximum Likelihood Estimator (MLE) of p0 and p1 given the setting
in Part c.
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Solution: Differentiating the log likelihood wrt p0 and setting to 0 gives us

5∑
i=1

ci
p̂0
− 1− ci

1− p̂0
= 0

=⇒ p̂0 =
1

5

5∑
i=1

ci.

Similarly we have

p̂1 =
1

5

5∑
i=1

ci.

(e) Instead of randomly picking coins, or deciding you’ll pick a specific number of coins
ahead of time, can you think of a better way to maximize your payout? You don’t
have to be particularly precise with your idea here.

Solution: We could pick which coin we will flip based on past results. The
more heads we observe from a coin the more sure we are that we should pick
that specific coin to maximize our payoff.

3. For each of the following likelihood functions show whether the Beta distribution is a
conjugate prior. Recall that the Beta distribution with parameters α > 0 and β > 0 has
probability mass function:

f(p;α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

For 0 ≤ p ≤ 1, where Γ is the gamma function which does not depend on p.

(a) Geometric Distribution:
P (k|p) = (1− p)k−1p

Solution: It is a conjugate prior for this likelihood.

P (p|k) ∝ pα(1− p)β+k−2

(b) Binomial Distribution:

P (p|k, n) =

(
n

k

)
(1− p)n−kpk
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Solution: It is a conjugate prior for this likelihood.

P (p|k, n) ∝ pα+k−1(1− p)β+n−k−1

4. In this question we will analyze decision making with Gaussians using the Chernoff
and Chebyshev bounds we have seen in lecture. Suppose you observe a sample from a
Gaussian distribution. Under the null hypothesis, the sample comes from a Gaussian
with mean 0 and variance 1. Under the alternative hypothesis the sample comes from a
Gaussian with mean µ 6= 0 and variance 1.

Recall that the probability density function of a Gaussian distribution is given by:

f(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

Since you do not want to evaluate the cumulative density function of a normal, you
decide to see if you can use the Chebyshev and Chernoff bounds to construct a decision
rule. Suppose you collect n data points X1, ..., Xn and accept the null hypothesis if
|X̄| < c and reject otherwise, where X̄ is the sample mean:

X̄ =
1

n

n∑
i=1

Xi

Recall that for i.i.d samples from a Normal distribution with variance 1 the Chebyshev
bound is:

P (|X̄ − µ| ≥ c) ≤ 1

nc2

And the Chernoff bound is given by:

P (|X̄ − µ| ≥ c) ≤ e−
nc2

2

(a) Using the Chebyshev bound, what value of c allows you to control the probability
of a false discovery below level α?

Solution:

P (|X̄| ≥ c) ≤ 1

nc2
= α

c =
1√
nα

(b) Using the Chernoff bound, what value of c allows you to control the probability of
a false discovery below level α?
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Solution:

P (|X̄| ≥ c) ≤ e−
nc2

2 = α

c =

√
2

n
log(1/α)
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