Classification & Logistic Regression & maybe deep learning

Slides by:

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Previously...

So far

Squared Loss

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 + \lambda \mathbf{R}(\theta)$$

Regularization

Classification

Taxonomy of Machine Learning

Labeled Data

Supervised Learning

Quantitative Response

Regression

Categorical Response

Classification

Reinforcement Learning (covered later)

Alpha Go

Unsupervised Learning

2nd 3rd 1st 5

Clustering

Classification

Can we just use least squares?

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 + \lambda \mathbf{R}(\theta)$$

Defining the Loss

Could we use the Squared Loss

What about squared loss and the new model:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\phi(x_i)^T \theta))^2$$

- Tries to match probability with 0/1 labels.
- > Occasionally used in some neural network applications
- Non-convex!

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\phi(x_i)^T \theta))^2$$

- > Tries to match probability with 0/1 labels.
- Occasionally used in some neural network applications
- Non-convex!

Defining the Cross Entropy Loss

Loss Function

> We want our model to be close to the data:

$$\hat{\mathbf{P}}_{\theta}(y=1 \mid x) \approx \mathbf{P}(y=1 \mid x)$$

> Example: (cute or not)?

	Cute	Not Cute
Observed Probability	$\mathbf{P}(y=1 \mid x) = 1.0$	$\mathbf{P}(y = 0 \mid x) = 0.0$
Predicted Probability	$\hat{\mathbf{P}}_{\theta} (y = 1 \mid x)$ = 0.8	$\hat{\mathbf{P}}_{\theta} (y = 0 \mid x)$ = 0.2

The Loss for Logistic Regression

> Average cross entropy (simplified):

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \phi(x_i)^T \theta + \log \left(\sigma \left(-\phi(x_i)^T \theta \right) \right) \right)$$

- > Equivalent to (derived from) minimizing the KL divergence
- Also equivalent to maximizing the log-likelihood of the data ... (not covered in Data 100 this semester)

Is this loss function reasonable?

Convexity Using Pictures

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \phi(x_i)^T \theta + \log \left(\sigma \left(-\phi(x_i)^T \theta \right) \right) \right)$$

Linearly Separable Data

- A classification dataset is said to be linearly separable if there exists a hyperplane that separates the two classes.
- ➤ If data is linearly separable, logistic regression requires regularization

Weights go to infinity!

Linearly Separable Data

Not Linearly Separable Data

Adding Regularization to Logistic Regression

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \phi(x_i)^T \theta + \log \left(\sigma \left(-\phi(x_i)^T \theta \right) \right) \right) + \lambda \sum_{j=1}^{d} \theta_j^2$$

Prevents weights from diverging on linearly separable data

