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Taxonomy of
Machine Learning
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Classification

Can we Just use
least squarese
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Defining the Loss



Could we use the Squared Loss

» What about squared loss and the new model:

LO) = =5 (4i — 0 (6(x:)76))’
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» Tries to match probability with 0/1 labels.
» Occasionally used in some neural network applications
> Non-convex!
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» Tries to match probability with 0/1 labels.
» Occasionally used in some neural network applications
> Non-convex!
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Defining the
Cross Entropy Loss



Loss Function

> We want our model to be close 1o the data:;

Py(y=1[z) =~ P(y=1|x)

» Example: (cute or not)?

Observed Py=1|z) P(y=0]|x)
Probability =1.0 =0.0

=1|z) Py(y=0|x)
0.8 =0.2

Predicted Py (y
Probability =



The Loss for Logistic Regression

» Average cross entropy (simplified):

1 T T
arg min —— ;_1 (y ¢(x;)" 0 + log (0 ( o(x;) )))
» Equivalent to (derived from) minimizing the KL divergence

» Also equivalent o maximizing the log-likelihood of the data ...
(not covered in Data100 this semester)

s This loss function reasonable?



Convexity Using Pictures
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Linearly Separable Data

Linearly Separable Data

> A classification dataset is said to be
inearly separable if there exists a e

hyperplane that separates the two O O O
classes.

Not Linearly Separable Data

> |If data is linearly separable, logistic
regression requires regularization

O
[ Weights go to O o
] infinity! O O




Adding Regularization to
Logistic Regression
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» Prevents weights from diverging on linearly separable do’ro
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