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Controlling the FDR
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• Benjamini & Hochberg (1995) proposed an algorithm that does it

• Given     tests, obtain p-values     , and sort them from smallest to 
largest, denoting the sorted p-values as 

– the small ones are the safest to reject

• Now, find the largest    such that:

• Reject the null hypothesis (i.e., declare discoveries) for 
all hypotheses       such that 

• This controls the FDR!



P-Values
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• Consider a point-null hypothesis,           , and     denote that null  

• Consider a statistic,         , which has a continuous distribution 
under the null, and let         denote its tail cdf:

• Define the P-value as

• The P-value has a uniform distribution under the null:    



A Generic Decision Rule
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• Reject       if the random variable      is equal to 1:   



The Online Problem
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• Classical statistics, and also the Benjamini & Hochberg 
algorithm focused on a batch setting in which all data has 
already been collected

• E.g., for Benjamini & Hochberg, you need all of the p-values 
before you can get started

• Is is possible to consider methods that make sequences of 
decisions, and provide FDR control at any moment in time

• Is it conceivable that one can achieve lifetime FDR control?



• Classical FDR procedures (such as BH) which make all decisions 

simultaneously are called “offline”

• “Online” FDR procedures make decisions one at a time

Online vs Offline FDR Control
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Example: Many Enterprises Run Thousands

of So-Called A/B Tests Each Day
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Challenges
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• It’s not clear how to do change batch procedures such aws
Benjamini-Hochberg procedure to be online

• We might retreat to Bonferroni, which would allow us to set     
to             and thereby have a FWER of         after    tests            

– but what do we do on the                 test? 

– we eventually can’t do any more tests

– we’ve used up our “alpha wealth”



A More General Approach: Time-Varying Alpha
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More Challenges
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• We want to keep going for an arbitrary amount of time, so we 
need                     , and                    for any fixed

• An example:   

• But now we have less and less power to make discoveries 
over time, and eventually we may as well quit

• Is there any way out of this dilemma?
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A Glimmer of Hope

University of California, Berkeley

• Recall that the FDP is a ratio of two counts

• We can make a ratio small in one of two ways:
– make the numerator small

– make the denominator big

• The numerator has the false-positive rate in it, and so we’re 
back to the same problem of controlling sums of      values 

• The denominator can be made large by making lots of 
discoveries

• Perhaps we can earn a bit of alpha whenever we make a 
discovery, to be invested and used for false discoveries later
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Error budget 
for first test

Error budget for 
second test

Tests use wealth

Discoveries 
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Error budget
is data-dependent

Infinite process

Online FDR Control : High-Level Picture



Online FDR Algorithms

• The first online FDR algorithm was known as “alpha 

investing” and is due to Foster and Stine (2008)

• A more recent (and simpler) online FDR algorithm is due 

to Javanmard and Montanari, and is called “LORD”

• The basic idea is to assign      in a way that ensures





A Stripped-Down Version of LORD
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A Stripped-Down Version of LORD

• Only consider the most recent rejection

• This renews the wealth, which further decays

• Why does such an approach provide control over the FDR?

• Return to the Bayesian perspective, and consider the 
following estimate (an upper bound) of the FDP:

• The denominator is just the number of rejections until time   , 
and the numerator is an upper bound on the Type I error 
probabilities
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A Stripped-Down Version of LORD

• Break up the sum                into “episodes” between the 

rejections

• In each episode, the sum is upper bounded by                        , 

by the definition of (simplified) LORD, where    is the episode 

length and    is the time of the most recent rejection

• This sum is less than    by the definition of the        sequence

• The number of episodes is:      

• And so we conclude:



• We make an approximation:

and then compute:

where the last line uses:

• This establishes: 

And Now We Connect to the FDR



• We make an approximation:

and then compute:

where the last line uses:

• This establishes: 

LORD’s Control of mFDR (Modified FDR)



• We’ve focused on providing guarantees that a test, or a 

set of tests, perform well

• Can you think of situations where one would like to 

guarantee the opposite---that a test cannot perform well?

Further Perspective on Hypothesis Testing



• Individuals are not generally willing to allow their 

personal data to be used without control on how it will 

be used and now much privacy loss they will incur

• “Privacy loss” can be quantified via differential privacy

• We want to trade privacy loss against the value we 

obtain from data analysis

• The question becomes that of quantifying such value 

and juxtaposing it with privacy loss

• We’ll have an entire section on privacy later in the 

course, but let’s make some initial comments here

Privacy and Data Analysis
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Privacy and Inference
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• What if we don’t have a well-specified null distribution in 

mind?

• In the classical single-hypothesis-testing paradigm, we are 

more or less stuck

• In the modern multiple-hypothesis-testing paradigm, if all of 

the null hypotheses are the same, then we have many 

draws from the null distribution at hand
– we don’t know which ones are null, but in the case of particular interest, 

when       is large, we can assume that most of the data points 

corresponding to large p-values are from the null

– and so we can estimate the null, using some form of density estimation

Estimating the Null Distribution



• Remember permutation testing from Data 8?

• Permutation testing allows us to effectively obtain multiple 

draws from the null, and each draw has the same 

underlying probability, if we work in the appropriate 

conditional distribution
– we don’t know that probability, but we know that it’s constant

– which is enough to be able to specify a conditional null that’s easy to 

work with

– let’s flesh this out…

Relationship to Permutation Testing



• In Data 8 we explained the permutation test intuitively

• Let’s try to do a bit better now that we’re at the Data 102 

level

• First, we define the notion of exchangeability:
– an infinite collection of random variables,                   , is exchangeable 

if for any    and any permutation    , the distribution of                                 

is the same as the distribution of

– i.e., the order of the variables doesn’t matter

– this is a deeper concept than “independent and identically distributed”

A Data 102 Explanation of Permutation Testing



• Let     denote the unordered set of variables                         , 

under an exchangeability assumption for the null

• Given a statistic     that is an indicator of a rejection region, 

consider the conditional expectation

which is the probability of a Type I error

• Can we compute this conditional expectation?  What is the 

distribution obtained by conditioning on     ?

Permutation Testing (Cont)
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• What is the distribution obtained by conditioning on     ?

• It’s the uniform distribution on the orbit induced by 

exchangeability
– we thereby avoid the complexities associated with knowing actual 

probabilities of points in the sample space 

– we can then compute                   by enumerating (or, more realistically, 

uniformly sampling) the permutations

– so it’s easy to ensure                             for the null (i.e., we get Type I 

error control, conditionally)

• And now the magic happens: 
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• What is the distribution obtained by conditioning on     ?

• It’s the uniform distribution on the orbit induced by 

exchangeability
– we thereby avoid the complexities associated with knowing actual 

probabilities of points in the sample space 

– we can then compute                   by enumerating (or, more realistically, 

uniformly sampling) the permutations

– so it’s easy to ensure                             for the null (i.e., we get Type I 

error control, conditionally)
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