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Some Column-Wise Rates

Decision

0 1
> © 100 no1
2
©
()
X — | MNio n11

no1
no1—+mni1

University of California, Berkeley

false discovery proportion —



The Goal: Control Errors A Priori

» The row-focused Neyman-Pearson paradigm, with its
Type | and Type Il errors, provides a priori control

— meaning that if my assumptions about the null and alternative
distributions are correct, then | can guarantee that these errors will
be small (in an average, frequentist sense---over multiple draws of
data)
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The Goal: Control Errors A Priori

» The row-focused Neyman-Pearson paradigm, with its

Type | and Type Il errors, provides a priori control

— meaning that if my assumptions about the null and alternative
distributions are correct, then | can guarantee that these errors will
be small (in an average, frequentist sense---over multiple draws of
data)

« If I'm only testing one hypothesis, that’s satisfying
« The problem that arose with our A/B testing example
arose because we were doing many tests

« Can we find a way to obtain a priori control when there
are many tests?
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Comments on the Column-Wise Rates

« They can be thought of as estimates of conditional
probabilities

« They are dependent on the prevalence (i.e., the
probabilities of the two states of Reality in the
population), via Bayes’ Theorem

— as such, they are more Bayesian
— this is arguably a good thing

« Notation: let H denote Reality, and let DD denote the
decision
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A Bayesian Calculation

P(H=0,D =1)

PH=0|D=1)= P =1
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A Bayesian Calculation

P(H=0,D = 1)

P(D = 1)
.~ P(D=1|H =0)P(H = 0)
B P(D=1)
_ P(Type I error) - m
P(D=1)

We could upper bound 7y with 1, and so the numerator can
be controlled; what about the denominator?
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P(H=0|D=1)=




A Bayesian Calculation

« Using the law of total probability, we have:

P(D=1)=P(D=1|H=0)P(H=0)+P(D=1|H=1)P(H =1)
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A Bayesian Calculation

« Using the law of total probability, we have:
PD=1)=PD=1|H=0PH=0)+PD=1|H=1)PH=1)
=moP(D=1H=0)+(1—-m)P(D=1|H =1)

+ So we see that P(D = 1) depends on the prior

* Is this a problem?

— i.e., do we have to either decide to be Bayesian and supply the prior, or decide to
be frequentist and abandon this approach?

« No! Note that it's easy to estimate P(D = 1) directly from the
datal
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values P;, and sort them from smallest to
largest, denoting the sorted p-values as P,

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values P;, and sort them from smallest to
largest, denoting the sorted p-values as P,
— the small ones are the safest to reject

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values P;, and sort them from smallest to
largest, denoting the sorted p-values as P,
— the small ones are the safest to reject

- Now, find the largest & such that:

k
Py < —a
m

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values P;, and sort them from smallest to
largest, denoting the sorted p-values as P,
— the small ones are the safest to reject

- Now, find the largest & such that:

k
Py < —a
m

* Reject the null hypothesis (i.e., declare discoveries) for
all hypotheses H,; suchthat i < k

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values P;, and sort them from smallest to
largest, denoting the sorted p-values as P,
— the small ones are the safest to reject

- Now, find the largest & such that:

k
Py = —a
m

* Reject the null hypothesis (i.e., declare discoveries) for
all hypotheses H,; suchthat i < k

 This controls the FDR!
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P-Values

« Consider a point-null hypothesis, § = 0, and [P denote that null

« Consider a statistic, 7'(X ), which has a continuous distribution
under the null, and let F'(¢) denote its tail cdf:

F(t) = P(T > t)

- Define the P-value as P = F'(T)
« The P-value has a uniform distribution under the null:

P(P <p)=PF(T)<p)=P(T >F (p)=F(F (p) =p
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A Generic Decision Rule

* Reject H; if the random variable 7} is equal to 1:

* 1 0, otherwise
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The Online Problem

« Classical statistics, and also the Benjamini & Hochberg

algorithm focused on a batch setting in which all data has
already been collected

« E.g., for Benjamini & Hochberg, you need all of the p-values
before you can get started

* |sis possible to consider methods that make sequences of
decisions, and provide FDR control at any moment in time

 |s it conceivable that one can achieve FDR control?
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Online vs Offline FDR Control

« Classical FDR procedures (such as BH) which make all decisions
simultaneously are called “offline”

* “Online” FDR procedures make decisions one at a time




Example: Many Enterprises Run Thousands
of So-Called A/B Tests Each Day
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Challenges

* It's not clear how to do change batch procedures such aws
Benjamini-Hochberg procedure to be online
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Challenges

* It's not clear how to do change batch procedures such aws
Benjamini-Hochberg procedure to be online

« We might retreat to Bonferroni, which would allow us to set &
to 0.05/n and thereby have a FWER of 0.05 after n tests

— but what do we do on the (n + 1)th test?
— we eventually can’t do any more tests
— we've used up our “alpha wealth”
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A More General Approach: Time-Varying Alpha
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More Challenges

We want to keep going for an arbitrary amount of time, so we
need >°°. a; =1,and Y., , a; < 1for any fixed T

« Anexample: ay = 27¢

 But now we have less and less power to make discoveries
over time, and eventually we may as well quit

* |s there any way out of this dilemma?
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— make the big
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A Glimmer of Hope

« Recall that the FDP is a of two counts
« We can make a ratio small in one of two ways:
— make the small
— make the big
« The has the false-positive rate in it, and so we’re
back to the same problem of controlling sums of «; values
- The can be made large by making lots of
discoveries

« Perhaps we can earn a bit of alpha whenever we make a
discovery, to be invested and used for false discoveries later

University of California, Berkeley
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Online FDR Control : High-Level Picture

Error budget
/ for first test

Error budget for

/‘ second test
‘ é‘ Tests use wealth

Remaining error budget\

or “alpha-wealth” .
Infinite process

Discoveries
earn wealth
‘ Error budget

is data-dependent




Online FDR Algorithms

* The first online FDR algorithm was known as “alpha
investing” and is due to Foster and Stine (2008)

« A more recent (and simpler) online FDR algorithm is due
to Javanmard and Montanari, and is called “LORD”

« The basic idea is to assign & in a way that ensures

FDP(t) := ——=~=! <a
2i—1 HPi < o}



Algorithm 1 The LORD Procedure

input: FDR level a, non-increasing sequence {v;}:2; such that > .° v = 1,
initial wealth Wy < «
Set ] =7 W()

fort=1,2,... do
p-value P; arrives

if P, < a4, reject P,

asr1 = Vet Wo + Yey1—r (@ — Wo)l{m <t} +a Z;il Vi+1—7; 1{7'3' < tf,

where 7; is time of j-th rejection 7, = min{k : Zle HP <wo}=3j}
end




A Stripped-Down Version of LORD

* Only consider the most recent rejection
« This renews the wealth, which further decays
» See description, and proof of mFDR control, on board




A Heuristic Argument for LORD’s Control of FDR

 We make an approximation:
E[Zigt,z’ nunt P < o }]

FDR ~
E[Zigt HP; < a;}]

and then compute:

]E[ Y YP<o}| = Y EEHP<alall= ) EP{P < ol
1<t,? null

1<t,i null 1<t,i null
= > Ela SE[} i SB[} YP < o}
1<t,7 null 1<t 1<t
where the last line uses: ,
FDP(t) := 2iz1 % <a

« This establishes: S P <o} T




