

DS 102: Data, Inference, and Decisions

Lecture 4

Michael Jordan
University of California, Berkeley

Some Column-Wise Rates

false discovery proportion
$$= \frac{n_{01}}{n_{01} + n_{11}}$$

- The row-focused Neyman-Pearson paradigm, with its Type I and Type II errors, provides a priori control
 - meaning that if my assumptions about the null and alternative distributions are correct, then I can guarantee that these errors will be small (in an average, frequentist sense---over multiple draws of data)

- The row-focused Neyman-Pearson paradigm, with its Type I and Type II errors, provides a priori control
 - meaning that if my assumptions about the null and alternative distributions are correct, then I can guarantee that these errors will be small (in an average, frequentist sense---over multiple draws of data)
- If I'm only testing one hypothesis, that's satisfying

- The row-focused Neyman-Pearson paradigm, with its Type I and Type II errors, provides a priori control
 - meaning that if my assumptions about the null and alternative distributions are correct, then I can guarantee that these errors will be small (in an average, frequentist sense---over multiple draws of data)
- If I'm only testing one hypothesis, that's satisfying
- The problem that arose with our A/B testing example arose because we were doing many tests

- The row-focused Neyman-Pearson paradigm, with its Type I and Type II errors, provides a priori control
 - meaning that if my assumptions about the null and alternative distributions are correct, then I can guarantee that these errors will be small (in an average, frequentist sense---over multiple draws of data)
- If I'm only testing one hypothesis, that's satisfying
- The problem that arose with our A/B testing example arose because we were doing many tests
- Can we find a way to obtain a priori control when there are many tests?

Comments on the Column-Wise Rates

- They can be thought of as estimates of conditional probabilities
- They are dependent on the prevalence (i.e., the probabilities of the two states of Reality in the population), via Bayes' Theorem
 - as such, they are more Bayesian
 - this is arguably a good thing
- Notation: let H denote Reality, and let D denote the decision

$$P(H = 0 | D = 1) = \frac{P(H = 0, D = 1)}{P(D = 1)}$$

$$P(H = 0 | D = 1) = \frac{P(H = 0, D = 1)}{P(D = 1)}$$

$$= \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$

$$= \frac{P(\text{Type I error}) \cdot \pi_0}{P(D = 1)}$$

• We could upper bound π_0 with 1, and so the numerator can be controlled; what about the denominator?

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$

Using the law of total probability, we have:

$$P(D = 1) = P(D = 1 | H = 0)P(H = 0) + P(D = 1 | H = 1)P(H = 1)$$
$$= \pi_0 P(D = 1 | H = 0) + (1 - \pi_0)P(D = 1 | H = 1)$$

• So we see that P(D=1) depends on the prior π_0

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$
$$= \pi_0 P(D=1 | H=0) + (1 - \pi_0)P(D=1 | H=1)$$

- So we see that P(D=1) depends on the prior π_0
- Is this a problem?
 - i.e., do we have to either decide to be Bayesian and supply the prior, or decide to be frequentist and abandon this approach?
- No! Note that it's easy to estimate $P(D=1)\,$ directly from the data!

Benjamini & Hochberg (1995) proposed an algorithm that does it

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest *k* such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

• Reject the null hypothesis (i.e., declare discoveries) for all hypotheses H_i such that $i \leq k$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest *k* such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

- Reject the null hypothesis (i.e., declare discoveries) for all hypotheses H_i such that $i \leq k$
- This controls the FDR!

P-Values

- Consider a point-null hypothesis, heta=0 , and $\mathbb P$ denote that null
- Consider a statistic, T(X), which has a continuous distribution under the null, and let F(t) denote its tail cdf:

$$F(t) = \mathbb{P}(T > t)$$

- Define the P-value as P = F(T)
- The P-value has a uniform distribution under the null:

$$\mathbb{P}(P < p) = \mathbb{P}(F(T) < p) = \mathbb{P}(T > F^{-1}(p)) = F(F^{-1}(p)) = p$$

A Generic Decision Rule

• Reject H_i if the random variable T_i is equal to 1:

$$T_i = \begin{cases} 1, & \text{if } P_i \le \alpha_i \\ 0, & \text{otherwise} \end{cases}$$

The Online Problem

- Classical statistics, and also the Benjamini & Hochberg algorithm focused on a batch setting in which all data has already been collected
- E.g., for Benjamini & Hochberg, you need all of the p-values before you can get started
- Is is possible to consider methods that make sequences of decisions, and provide FDR control at any moment in time
- Is it conceivable that one can achieve lifetime FDR control?

Online vs Offline FDR Control

 Classical FDR procedures (such as BH) which make all decisions simultaneously are called "offline"

"Online" FDR procedures make decisions one at a time

Example: Many Enterprises Run Thousands of So-Called A/B Tests Each Day

Challenges

 It's not clear how to do change batch procedures such aws Benjamini-Hochberg procedure to be online

Challenges

- It's not clear how to do change batch procedures such aws Benjamini-Hochberg procedure to be online
- We might retreat to Bonferroni, which would allow us to set α to 0.05/n and thereby have a FWER of 0.05 after n tests
 - but what do we do on the (n+1)th test?
 - we eventually can't do any more tests
 - we've used up our "alpha wealth"

A More General Approach: Time-Varying Alpha

More Challenges

- We want to keep going for an arbitrary amount of time, so we need $\sum_{t=1}^{\infty} \alpha_t = 1$, and $\sum_{t=1}^{T} \alpha_t < 1$ for any fixed T
- An example: $\alpha_t = 2^{-t}$
- But now we have less and less power to make discoveries over time, and eventually we may as well quit
- Is there any way out of this dilemma?

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so we're back to the same problem of controlling sums of α_i values

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so we're back to the same problem of controlling sums of α_i values
- The denominator can be made large by making lots of discoveries

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so we're back to the same problem of controlling sums of α_i values
- The denominator can be made large by making lots of discoveries
- Perhaps we can earn a bit of alpha whenever we make a discovery, to be invested and used for false discoveries later

Online FDR Algorithms

- The first online FDR algorithm was known as "alpha investing" and is due to Foster and Stine (2008)
- A more recent (and simpler) online FDR algorithm is due to Javanmard and Montanari, and is called "LORD"
- The basic idea is to assign α_t in a way that ensures

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

Algorithm 1 The LORD Procedure

input: FDR level α , non-increasing sequence $\{\gamma_t\}_{t=1}^{\infty}$ such that $\sum_{t=1}^{\infty} \gamma_t = 1$, initial wealth $W_0 \leq \alpha$

Set $\alpha_1 = \gamma_1 W_0$

for t = 1, 2, ... do

p-value P_t arrives

if $P_t \leq \alpha_t$, reject P_t

 $\alpha_{t+1} = \gamma_{t+1} W_0 + \gamma_{t+1-\tau_1} (\alpha - W_0) \mathbf{1} \{ \tau_1 < t \} + \alpha \sum_{j=1}^{\infty} \gamma_{t+1-\tau_j} \mathbf{1} \{ \tau_j < t \},$

where τ_j is time of j-th rejection $\tau_j = \min\{k : \sum_{l=1}^k \mathbf{1}\{P_l \le \alpha_l\} = j\}$

end

A Stripped-Down Version of LORD

- Only consider the most recent rejection
- This renews the wealth, which further decays
- See description, and proof of mFDR control, on board

A Heuristic Argument for LORD's Control of FDR

We make an approximation:

FDR
$$\approx \frac{\mathbb{E}\left[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}\right]}{\mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]}$$

and then compute:

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} 1\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}\left[\mathbb{E}\left[1\{P_i \leq \alpha_i\} | \alpha_i\right]\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}\left[\mathbb{P}\left\{P_i \leq \alpha_i | \alpha_i\right\}\right]$$

$$= \sum_{i \leq t, i \text{ null}} \mathbb{E}\left[\alpha_i\right] \leq \mathbb{E}\left[\sum_{i \leq t} \alpha_i\right] \leq \alpha \mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]$$

where the last line uses:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

This establishes:

$$FDR \leq \alpha$$