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Decision-Theoretic Framework

• Define a family of probability models for the data    , indexed by a parameter
• Define a procedure           that operates on the data to make a decision
• Define a loss function:

• Example: L2 loss
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Examples (on the White Board)

• The risk under the 0/1 loss
• The risk under the L2 loss

University of California, Berkeley



Back to Hypothesis Testing

• Let’s now consider a column-wise perspective
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Some Column-Wise Rates
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Run 10,000 
different,

independent
A/B tests

9,900 true
nulls

100 non-
nulls

Type I error rate (per test) = 0.05

495 false 
discoveries

80 true 
discoveries

“false discovery
rate” = 495/575

Power (per test) = 0.80



Run 10,000 
different,

independent
A/B tests

9,900 true
nulls

100 non-
nulls

Type I error rate (per test) = 0.05

495 false 
discoveries

80 true 
discoveries

“false discovery
rate” = 495/575

Power (per test) = 0.80

(NB: We’re again not being rigorous at this point; FDR is 
actually an expectation of this proportion.  We’ll do it right 
anon.)



The Goal: Control Errors A Priori

• The row-focused Neyman-Pearson paradigm, with its 
Type I and Type II errors, provides a priori control

– meaning that if my assumptions about the null and alternative 
distributions are correct, then I can guarantee that these errors 
will be small (in an average, frequentist sense---over multiple 
draws of data)
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The Goal: Control Errors A Priori

• The row-focused Neyman-Pearson paradigm, with its 
Type I and Type II errors, provides a priori control

– meaning that if my assumptions about the null and alternative 
distributions are correct, then I can guarantee that these errors 
will be small (in an average, frequentist sense---over multiple 
draws of data)

• If I’m only testing one hypothesis, that’s satisfying
• The problem that arose with our A/B testing example 

arose because we were doing many tests
• Can we find a way to obtain a priori control when there 

are many tests?
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Multiple Decisions: The Statistical 
Problem







A First Attempt:  Bonferroni

• Let’s suppose that we’re conducting      tests, not just one
• Let     denote the number of Type I errors in my      tests, and 

let                 denote the event of a Type I error on the       
test 

• Let’s use a rejection threshold of           in the classical 
paradigm instead of

• This controls a certain error rate… 
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A First Attempt:  Bonferroni
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• We’ve controlled a quantity known as the family-wise error rate 
(FWER)



Naïve Multiple Hypothesis Testing

• This is the kind of mess that we’ve alluded to earlier; how 
about Bonferroni?



Bonferroni

• Bonferroni is overly stringent---it prevents us from making 
many discoveries



Let’s Return to our Column-Wise Rates
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Comments on the Column-Wise Rates

• They can be thought of as estimates of conditional 
probabilities

• They are dependent on the prevalence (i.e., the 
probabilities of the two states of Reality in the 
population), via Bayes’ Theorem

– as such, they are more Bayesian
– this is arguably a good thing

• Notation:  let      denote Reality, and let     denote the 
decision 
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A Bayesian Calculation
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A Bayesian Calculation
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• We could upper bound       with 1, and so the numerator can 
be controlled; what about the denominator? 



A Bayesian Calculation
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• Using the law of total probability, we have:
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A Bayesian Calculation
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• Using the law of total probability, we have:

• So we see that                    depends on the prior
• Is this a problem?

– i.e., do we have to either decide to be Bayesian and supply the prior, or decide 
to be frequentist and abandon this approach?

• No!  Note that it’s easy to estimate                    directly from the 
data! 
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Controlling the FDR
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• Benjamini & Hochberg (1995) proposed an algorithm that does it
• Given     tests, obtain p-values     , and sort them from smallest to 

largest, denoting the sorted p-values as 
– the small ones are the safest to reject

• Now, find the largest    such that:

• Reject the null hypothesis (i.e., declare discoveries) for 
all hypotheses       such that 

• This controls the FDR!



The Online Problem
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• Classical statistics, and also the Benjamini & Hochberg 
algorithm focused on a batch setting in which all data has 
already been collected

• E.g., for Benjamini & Hochberg, you need all of the p-values 
before you can get started

• Is is possible to consider methods that make sequences of 
decisions, and provide FDR control at any moment in time

• Is it conceivable that one can achieve lifetime FDR control?



Many enterprises run thousands
of different (independent) A/B tests over time
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What we will do instead:

Time

vs.
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Color

Size

Orientation

Style

Logo

How do we
set each error

target to 
control FDR
at any time?

Decision Rule:



Online FDR control : high-level picture
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or “alpha-wealth”
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for first test

Error budget for 
second test

Tests use wealth
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Online FDR control : high-level picture

Remaining error budget 
or “alpha-wealth”

Error budget 
for first test

Error budget for 
second test

Tests use wealth

Discoveries 
earn wealth

Error budget
is data-dependent

Infinite process



Online FDR control

• classical FDR literature assumes that the data for all hypotheses is collected at 
once, and only after all the p-values are available, one can decide which of the 
hypotheses should be proclaimed discoveries

• in modern testing we often do not know how many hypotheses we want to test 
in advance

• instead, a possibly infinite sequence of tests (i.e. p-values) arrives sequentially
• we have to make decisions online, with no knowledge of future tests, in a way 
that guarantees FDR control under a pre-specified level      at any given time

• motivating examples: A/B testing, large-scale clinical trials…



Online vs offline FDR control
• classical FDR procedures (like BH) which 

make all decisions simultaneously are called 
“offline”

P1 P2 P3

P4 P5

decisions

• online FDR procedures make decisions one at 
a time

P1 P2 P3 P4 P5

time

decision decision decision decision decision



Example: A/B testing
• online FDR algorithms pick significance level 

adaptively
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Online FDR algorithm

• the first online FDR algorithm was 
due to Foster and Stine (2008)

• a more recent (and simpler) online 
FDR algorithm is due to Javanmard 
and Montanari, and is called LORD

• its basic idea is to assign      in a 
way that ensures



• Why ensuring                                       
   controls FDR:

, and we have

so



Back to Inference

• Can we develop general frameworks that allow us to 
control column-wise quantities like the false-discovery 
rate (FDR)?

– in a similar way as Neyman-Pearson controls the false-positive 
rate

• To be continued…
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