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Last time

e Failure of ad-hoc anonymization
o data linkage and background knowledge
o 33 bits of entropy

e Reconstruction attacks

o fundamental law of information recovery
o Boosting weak signals
o Approximate inversion

e Randomized response

o  Simple noise addition method
o How does it generalize?



Today

Differential privacy, a mathematical privacy
notion aimed at privacy-preserving statistical
data analysis



Main intuition that differential privacy formalizes

“Whether or not you're in the dataset has little
effect on the output of the analysis.”



Differential Privacy
[Dwork-McSherry-Nissim-Smith-06]
Two data sets D,D’ are called neighboring if

they differ in at most one data record.
Example: D = {GWAS test population}, D’ = D — {Moritz's DNA}

Informal Definition (Differential Privacy):
A randomized algorithm A(D) is differentially private
if for all neighboring data sets D,D’ and all events S:

P{A(D) € S} ~P{A(D’) € S}




Definition (Differential Privacy):

A randomized algorithm A(D) is e-differentially private
if for all neighboring data sets D,D” and all events S:

P {A(D) € S} < exp(e)-P{A(D’) € S}

Density A

ratio bounded \
by exp(€) /\

Outputs




Interpretation

Differential privacy limits harm resulting from participation:

Whether you're in or out is about the same.
Answers counterfactual: What would've happened, had | not participated?
Population-level inferences still possible and perhaps harmful to you

Data shows smoking causes cancer

You smoke; your insurance premium goes up



Query model

Trusted

- Query g

Output:

g(D) + noise

Analyst

dataset D

Requirement: Output satisfies differential privacy

Goal: “Minimize |noise|”



Statistical queries

Database D subset of some universe X
Example: X = {0,7} ¢ (binary d-tuples)
Statistical query: predicate g : X — [0, 7]
Answer q(D):=% . . q(x)
between 0 and n =|D|
- Example: “How many people in D smoke and have cancer?”

By definition: For neighboring D, D”: |q(D) - q(D’)| < 1

This is called the query sensitivity. Sensitivity determines noise level.
Everything we do in this lecture assumes sensitivity 1.



Laplacian Mechanism [DMNS’'06]

Given query q:

1. Compute g(D) -
2. Output g(D) + Lap(1/¢) < g .

Density exp(-£|x-q(D)|)

Fact: Satisfies e-differential privacy



Laplacian Mechanism [DMNS’06]

Given query q:

1. Compute q(D) Suppose D,D’

2. Output g(D) + Lap(1/¢) neighboring
A q(D)+Lap(1/¢)
\ —a(D) +Lap(1/¢)
I\
density \ density

exp(-&|x-q(D) | N exp(-€|x-q(D’)[)
N




Recall randomized response

Suppose n individuals have sensitive -1/1 bits D = (b_, b,, ...b )

n

Randomized response (RR):

1. Compute noisy bits b ~ Bernoulli("2 + €b)).
2. Release RR(D) =3 b/

Claim: For € < %4, RR satisfies 2¢-differential privacy.



Local differential privacy

Each individual computes the randomization “locally” before sending differentially
private input to aggregation step

l.e., in randomized response noisy bit b is already differentially private
Contrast with “central differential privacy”: Compute > b, + Lap(2/¢)
Central approach adds less noise

Local approach gives privacy even when data curator (aggregator) is untrusted



How do we get more?



Composition guarantees for differential privacy

&-DP

&-DP

&-DP

&-DP

&-DP

&-DP

Fact:

Arbitrary composition
(sequential and/or parallel)
of k differentially private
algorithms is still
differentially private.

Privacy guarantee:
ke-differential privacy



Example: Laplacian Mechanism for multiple queries

Given queries q.,...q,: Answer k queries by adding
1. Compute q,(D), i=1...k Lap(k/€) to each answer;
2. Output g(D) + Lap(k/e) Gives &-DP over all

But: Becomes useless when k>n=|D]



Base case of composition

Claim:
A,(D) A,(D) The algorithm A(D) = (A, (D), A (D))
€,-DP €,-DP is (€ +¢&,)-differentially private.

Proof (for discrete probability distributions):
Fix neighboring D, D" and any two outputs r, in the range of A , and r, in the range of A,

P{A(D) =(r1,r2)}
P{A(D’) =(r1,r2)}




Base case of composition

Claim:
A,(D) A,(D) The algorithm A(D) = (A, (D), A (D))
€,-DP €,-DP is (€ +¢&,)-differentially private.

Proof (for discrete probability distributions):
Fix neighboring D, D" and any two outputs r, in the range of A , and r, in the range of A,

P{A(D) =(r1,r2)}  P{A1(D)=r1}P{A2(D) =r2}
P{A(D’) =(r1,r2)} P{A1(D’)=r1}P{A2(D’)=r2}




Base case of composition

Claim:
A.(D) A,(D) The algorithm A(D) = (A, (D), A (D))
€,-DP €,-DP is (€ +¢&,)-differentially private.

Proof (for discrete probability distributions):
Fix neighboring D, D" and any two outputs r, in the range of A , and r, in the range of A,

P{A(D) =(r1,r2)}  P{A1(D)=r1}P{A2(D) =r2}
P{A(D’) = (r1,r2)} P{A1(D")=r1}P{A2(D") =13}
_ ( P{A1(D)=r1}} )( P{A2(D)=r2} )
P{A1(D’)=r1}} /) \P{A2(D’) =r2}




Base case of composition

Claim:
A.(D) A,(D) The algorithm A(D) = (A, (D), A (D))
€,-DP €,-DP is (€ +¢&,)-differentially private.

Proof (for discrete probability distributions):
Fix neighboring D, D" and any two outputs r, in the range of A , and r, in the range of A,

P{A(D) =(r1,r2)}  P{A1(D)=r1}P{A2(D) =r2}
P{A(D’) = (r1,r2)} P{A1(D")=r1}P{A2(D") =13}
_ ( P{A1(D)=r1}} )( P{A2(D)=r2} )
P{A1(D’)=r1}} /) \P{A2(D’) =r2}
< exp(e1)exp(ez)




Base case of composition

Claim:
A.(D) A,(D) The algorithm A(D) = (A, (D), A (D))
€,-DP €,-DP is (€ +¢&,)-differentially private.

Proof (for discrete probability distributions):
Fix neighboring D, D" and any two outputs r, in the range of A , and r, in the range of A,

P{A(D) =(r1,r2)}  P{A1(D)=r1}P{A2(D) =r2}
P{A(D’)=(r1,r2)} P{A1(D’)=r1}P{A(D")=r}
_ ( P{A1(D)=r1}} )( P{A2(D)=r2} )
P{A1(D")=r1}}/\P{A2(D’)=r2}
< exp(e1) exp(ez)
= exp(€e1 + €2)




Composition guarantees for differential privacy

&-DP

&-DP

&-DP

&-DP

&-DP

&-DP

General statement follows from base
case by induction over acyclic
computation graph

Need one additional fact:

Postprocessing property. Any function
applied to the output of a differentially
private algorithm is differentially private
with the same privacy parameter.



How do we get even
more?



Relaxation of differential privacy

Two data sets D,D’ are called neighboring if
they differ in at most one data record.

Approximate Differential Privacy:
A randomized algorithm A(D) is (g, 6)-differentially private
if for all neighboring data sets D,D’ and all events S:

P{A(D) € S} < exp(e)P{A(D") € S} +6

Think: € =0.01 and 6 = 0o(1/|D]|)




Notes

Like differential privacy but with 6 chance of failure
Need 6 to be less than 1/|D|. Why?
Consider A(D) that randomly selects single x in D and outputs x

This algorithm satisfies (0, 1/|D|)-differential privacy, but always compromises
somebody’s privacy.



Strong composition theorem

Strong composition theorem (informal):
Assume € << k™ and & negligible. Then,

(8,5)-DP (8,6)-DP (8,6)-DP cosnposition g.atisﬂes . .
(k*e, k6)-differential privacy

Main point:

(¢,6)-DP || (¢,6)-DP Privacy loss factor k” instead of k

Can be shown to be best possible using
(8 (5)-DP signal boosting approach from last lecture.

Law of fundamental information recovery
still kicks in!




Can we get even more
IN some cases?



Multiplicative Weights Approach
[H-Rothblum’10, Gupta-H-Roth-Ullman’11, H-McSherry-Ligett'12]

Handles huge query sets:
Small error for any k < 2°M

Previous related work achieving similar results with different ideas:
Blum-Ligett-Roth 08, Dwork-Naor-Reingold-Rothblum-Vadhan 09,
Dwork-Rothblum-Vadhan 10, Roth-Roughgarden 10



Histogram View

Represent D as vector with |X| coordinates, one for each possible data point
- coordinate / = count number of times i/ appears in D

1 2 3 4 5 IX|

Normalized histogram = distribution over X
Statistical query g becomes vector in histogram space



What we want to do

Output:
Histogram D*

Input:
Histogram D ‘
query set Q

Requirements:
1.  D* satisfies differential privacy
2. |q(D)-q(D*)| small forall ginQ



Basic Algorithm

Input: Data set D, query set Q Each step satisfies
Let D, be uniform histogram differential privacy!
For t=7 until t=T:

1. Find “bad” query g where too large

2. Improve histogram using multiplicative weights update rule:
D, = MWUpdate(D, ,,q)
Output: D*=D_

Analysis: By multiplicative weights magic,
process runs out of bad queries quickly!




MWUpdate(D, , q)

At step t




MWUpdate(D, , q) %—1
q
1 A
At step t

Suppose q(D, ) << q(D)




MWUpdate(D, _, q)

Alenl

2+ 3 3 1
After step t

“F



Implementation

e Computational bottleneck: Enumerating over all |X| coordinates (| X| can be
exponential)

o necessary in worst-case due to hardness result [DNRRV09,Ull13]

e Parallelizable, scalable implementation with heuristic tweaks
[H-McSherry-Ligett, NIPS12]

o https://qithub.com/mrtzh/PrivateMultiplicativeWeights.jl

e Recent work attempts to do similar things using generative adversarial
networks (GANSs)


https://github.com/mrtzh/PrivateMultiplicativeWeights.jl

Some applications of
statistical queries



Recall: Statistical queries

Database D subset of some universe X
Example: X = {0,7} ¢ (binary d-tuples)
Statistical query: predicate g : X — [0, 7]
Answer q(D):=% . q(u)
between 0 and n =|D|
- Example: “How many people in D smoke and have cancer?”

Fact: For neighboring D, D": |q(D) - q(D")| = 1



Differentially private gradient descent

Suppose we want to train model on sensitive data using gradient descent
Update rule: w,,. =w, -a V loss(w, D)

Example squared loss: loss(w, D) = % y)inD (<w, x> -y)?
Fact: Each coordinate of Vloss(w, D) is a statistical query.

Hence, we can make gradient descent differentially private using what we have!



Differential privacy in
the wild



Some context

Initially many thought differential privacy was a theoretical toy

n o n o

“Adds too much noise”, “Nobody wants randomization”, “Will never catch on”,

“Laplace, LOL’, “The lawyers won't approve this.”, “Wake me up when Google
uses it.", “My statistics are already private.”

But over the last 15 years many worked hard to put differential privacy in practice

There are many real and significant challenges in doing so



Privacy Integrated Queries (PINQ)

Established: June 22, 2009

Overview Publications Downloads

Privacy Integrated Queries is a LINQ-like API for computing on privacy-sensitive data sets, while providing guarantees of differential privacy for the underlying records. The

‘ - research project is aimed at producing a simple, yet expressive language about which differential privacy properties can be efficiently reasoned and in which a rich collection of
@ é - analyses can be programmed.

(1

Substiantial progress has been recently made in the rigorous treatment of privacy-preserving data analysis, in the form of Differential Privacy: a formal and achievable
requirement that a computation not reveal even the presence of any one individual in its input. As powerful as this privacy criterion is, its formal nature challenges
data analysts and data providers to design new analyses and verify their privacy properties without the help of differential privacy experts.

https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-ping/

Early implementation of differential privacy spearheaded by Frank McSherry


https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Learning statistics with privacy, aided by the flip of a coin
October 30,2014

Cross-posted on the Research Blog and the Chromium Blog

At Google, we are constantly trying to improve the techniques we use to protect our
users' security and privacy. One such project, RAPPOR (Randomized Aggregatable
Privacy-Preserving Ordinal Response), provides a new state-of-the-art, privacy-
preserving way to learn software statistics that we can use to better safeguard our

users’ security, find bugs, and improve the overall user experience.

Building on the concept of randomized response, RAPPOR enables learning statistics
about the behavior of users’ software while guaranteeing client privacy. The guarantees
of differential privacy, which are widely accepted as being the strongest form of
privacy, have almost never been used in practice despite intense research in academia.

RAPPOR introduces a practical method to achieve those guarantees.

https://github.com/google/rappor

Large-scale system implemented as part of
Google Chrome.

First major industry product feature
involving differential privacy


https://github.com/google/rappor

Google is open-sourcing a tool for data
scientists to help protect private information

Google is making differential privacy available to anyone

By Nick Statt | @nickstatt | Sep 5, 2019, 6:00am EDT

f ¥ [ sHARE

https://qithub.com/qooqle/differential-privacy

Source:

https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-sour
ce-tool-privacy-data-sharing



https://github.com/google/differential-privacy
https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-source-tool-privacy-data-sharing
https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-source-tool-privacy-data-sharing

Differential privacy

sasdfghj kil
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The Verge: “It was probably the most bewildering part of Apple’s [2016] WWDC Keynote: in the middle of a
rundown of fancy new products arriving with iOS 10, Craig Federighi stopped to talk about abstract
mathematics. He was touting differential privacy, a statistical method that's become a valuable tool for
protecting user data.” https://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016



https://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016

A privacy-preserving system

Apple has adopted and further developed a technique known in the academic world
as local differential privacy to do something really exciting: gain insight into what many
Apple users are doing, while helping to preserve the privacy of individual users. It is a
technique that enables Apple to learn about the user community without learning
about individuals in the community. Differential privacy transforms the information
shared with Apple before it ever leaves the user’s device such that Apple can never
reproduce the true data.

From: https://www.apple.com/privacy/docs/Differential Privacy Overview.pdf



https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

Privacy Loss in Apple’s Implementation of Differential Privacy
on MacOS 10.12

Jun Tang Aleksandra Korolova Xiaolong Bai
University of Southern California University of Southern California Tsinghua University
juntang@usc.edu korolova@usc.edu bxl12@mails.tsinghua.edu.cn

Xueqiang Wang Xiaofeng Wang
Indiana University Indiana University
xw48@indiana.edu xw7@indiana.edu

“In June 2016, Apple announced that it will deploy differential privacy for some user
data collection in order to ensure privacy of user data, even from Apple. The details of
Apple's approach remained sparse. Although several patents have since appeared
hinting at the algorithms that may be used to achieve differential privacy, they did not
include a precise explanation of the approach taken to privacy parameter choice.
Such choice and the overall approach to privacy budget use and management are
key questions for understanding the privacy protections provided by any deployment
of differential privacy.”

https://arxiv.org/abs/1709.02753



https://arxiv.org/abs/1709.02753

Differential Privacy in the Real
World: The 2018 End-to-End
Census Test

John M. Abowd
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Formal Privacy:
Making an Impact at Large Organizations

Deploying Differential Privacy for the 2020
Census of Population and Housing

Simson L. Garfinkel
Senior Scientist, Confidentiality and Data Access
U.S. Census Bureau

July 31, 2019
JSM 2019

The views in this presentation are those of the author,
and not those of the U.S. Census Bureau.
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Stepping back

There are many challenges with putting differential privacy in practice
Computational challenges
Implementation pitfalls
Political struggles

Legal and policy hurdles



What we saw today

Differential privacy is a formal privacy notion
Natural counterfactual interpretation
Appealing properties (post-processing, composition)
Rich theory (many beautiful results we didn’t discuss)
Powerful methods to answer many queries with little noise

No panacea: Fundamental law of information recovery still relevant



Thank you.



