
Part II



Last time
● Failure of ad-hoc anonymization

○ data linkage and background knowledge
○ 33 bits of entropy

● Reconstruction attacks
○ fundamental law of information recovery
○ Boosting weak signals
○ Approximate inversion

● Randomized response
○ Simple noise addition method
○ How does it generalize?



Today

Differential privacy, a mathematical privacy 
notion aimed at privacy-preserving statistical 
data analysis



Main intuition that differential privacy formalizes

“Whether or not you’re in the dataset has little 
effect on the output of the analysis.”



Differential Privacy 
[Dwork-McSherry-Nissim-Smith-06]

Two data sets D,D’ are called neighboring if 
they differ in at most one data record.

Example: D = {GWAS test population}, D’ = D – {Moritz’s DNA}

Informal Definition (Differential Privacy):
A randomized algorithm A(D) is differentially private
if for all neighboring data sets D,D’ and all events S:
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Definition (Differential Privacy):
A randomized algorithm A(D) is ε-differentially private
if for all neighboring data sets D,D’ and all events S:



Interpretation
Differential privacy limits harm resulting from participation:

Whether you’re in or out is about the same.

Answers counterfactual: What would’ve happened, had I not participated?

Population-level inferences still possible and perhaps harmful to you

Data shows smoking causes cancer

You smoke; your insurance premium goes up
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Query model

Query q

Output: 

q(D) + noise

Requirement: Output satisfies differential privacy

Goal: “Minimize |noise|”



Database D subset of some universe X
Example: X = {0,1} d (binary d-tuples)

Statistical query: predicate q : X → [0, 1]
Answer q(D) := Σx in D q(x)

between 0 and n =|D|
• Example: “How many people in D smoke and have cancer?”

By definition: For neighboring D, D’: |q(D) - q(D’)| ≤ 1
This is called the query sensitivity. Sensitivity determines noise level. 

Everything we do in this lecture assumes sensitivity 1. 

Statistical queries



Laplacian Mechanism [DMNS’06]

Given query q:
1. Compute q(D)
2. Output q(D) + Lap(1/ε)

Fact: Satisfies ε-differential privacy

Density exp(-ε|x-q(D)|)



Laplacian Mechanism [DMNS’06]

Given query q:
1. Compute q(D)
2. Output q(D) + Lap(1/ε)

q(D)+Lap(1/ε)

q(D’) +Lap(1/ε)
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Suppose D,D’
neighboring



Recall randomized response
Suppose n individuals have sensitive -1/1 bits D = (b1, b2, ...bn)

Randomized response (RR):

1. Compute noisy bits bi’ ~ Bernoulli(½ + εbi).
2. Release RR(D) = ∑i bi’

Claim: For ε < ¼, RR satisfies 2ε-differential privacy.



Local differential privacy
Each individual computes the randomization “locally” before sending differentially 
private input to aggregation step

I.e., in randomized response noisy bit bi’ is already differentially private

Contrast with “central differential privacy”: Compute ∑i bi + Lap(2/ε)

Central approach adds less noise

Local approach gives privacy even when data curator (aggregator) is untrusted



How do we get more?



Composition guarantees for differential privacy

ε-DP ε-DP ε-DP

ε-DP ε-DP

ε-DP

Privacy guarantee:
kε-differential privacy

Fact:
Arbitrary composition 
(sequential and/or parallel) 
of k differentially private 
algorithms is still 
differentially private.



Example: Laplacian Mechanism for multiple queries

Given queries q1,...qk:
1. Compute qi(D), i=1...k
2. Output qi(D) + Lap(k/ε)

Answer k queries by adding 
Lap(k/ε) to each answer;

Gives ε-DP over all

But: Becomes useless when  k > n = |D|



Base case of composition
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Proof (for discrete probability distributions):
Fix neighboring D, D’ and any two outputs r1 in the range of A1, and r2 in the range of A2.
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Composition guarantees for differential privacy

ε-DP ε-DP ε-DP

ε-DP ε-DP

ε-DP

General statement follows from base 
case by induction over acyclic 
computation graph

Need one additional fact:

Postprocessing property. Any function 
applied to the output of a differentially 
private algorithm is differentially private 
with the same privacy parameter.



How do we get even 
more?



Relaxation of differential privacy
Two data sets D,D’ are called neighboring if 

they differ in at most one data record.

Approximate Differential Privacy:
A randomized algorithm A(D) is (ε, δ)-differentially private
if for all neighboring data sets D,D’ and all events S:

Think: ε = 0.01 and δ = o(1/|D|)



Notes
Like differential privacy but with δ chance of failure

Need δ to be less than 1/|D|. Why?

Consider A(D) that randomly selects single x in D and outputs x

This algorithm satisfies (0, 1/|D|)-differential privacy, but always compromises 
somebody’s privacy.



Strong composition theorem

(ε,δ)-DP

Strong composition theorem (informal):
Assume ε << k-½  and δ negligible. Then, 
composition satisfies 
(k½ε, kδ)-differential privacy 

(ε,δ)-DP (ε,δ)-DP

(ε,δ)-DP (ε,δ)-DP

(ε,δ)-DP

Main point:
Privacy loss factor k½ instead of k 

Can be shown to be best possible using 
signal boosting approach from last lecture.

Law of fundamental information recovery 
still kicks in!



Can we get even more 
in some cases?



Multiplicative Weights Approach 
[H-Rothblum’10, Gupta-H-Roth-Ullman’11, H-McSherry-Ligett’12]

Previous related work achieving similar results with different ideas: 
Blum-Ligett-Roth 08, Dwork-Naor-Reingold-Rothblum-Vadhan 09, 
Dwork-Rothblum-Vadhan 10, Roth-Roughgarden 10

Handles huge query sets:
Small error for any k < 2o(n)



Histogram View

. . .
1 2 3 |X|4 5

Represent D as vector with |X| coordinates, one for each possible data point
- coordinate i = count number of times i appears in D

Normalized histogram = distribution over X
Statistical query q becomes vector in histogram space



What we want to do

Input:
Histogram D
query set Q

Requirements:
1. D* satisfies differential privacy
2. |q(D)-q(D*)| small for all q in Q 

Output:
Histogram D*



Input: Data set D, query set Q
Let D0 be uniform histogram
For  t=1  until t=T:

1. Find “bad” query q where  | q(D) – q(Dt-1) |  too large
2. Improve histogram using multiplicative weights update rule:

  Dt = MWUpdate(Dt-1,q)
Output: D* = DT

Basic Algorithm

Analysis: By multiplicative weights magic, 
process runs out of bad queries quickly!

Each step satisfies 
differential privacy!
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Implementation

● Computational bottleneck: Enumerating over all |X| coordinates (|X| can be 
exponential)

○ necessary in worst-case due to hardness result [DNRRV09,Ull13]
● Parallelizable, scalable implementation with heuristic tweaks 

[H-McSherry-Ligett, NIPS12]
○ https://github.com/mrtzh/PrivateMultiplicativeWeights.jl

● Recent work attempts to do similar things using generative adversarial 
networks (GANs)

https://github.com/mrtzh/PrivateMultiplicativeWeights.jl


Some applications of 
statistical queries



Database D subset of some universe X
Example: X = {0,1} d (binary d-tuples)

Statistical query: predicate q : X → [0, 1]
Answer q(D) := Σx in D q(u)

between 0 and n =|D|
• Example: “How many people in D smoke and have cancer?”

Fact: For neighboring D, D’: |q(D) - q(D’)| ≤ 1

Recall: Statistical queries



Differentially private gradient descent
Suppose we want to train model on sensitive data using gradient descent

Update rule: wt+1 = wt - ɑ ∇ loss(wt, D)

Example squared loss:  loss(wt, D) = Σ(x,y) in D (<wt, x> - y)2

Fact: Each coordinate of ∇loss(wt, D) is a statistical query.

Hence, we can make gradient descent differentially private using what we have!



Differential privacy in 
the wild



Some context
Initially many thought differential privacy was a theoretical toy

“Adds too much noise”, “Nobody wants randomization”, “Will never catch on”, 
“Laplace, LOL”, “The lawyers won’t approve this.”, “Wake me up when Google 
uses it.”, “My statistics are already private.”

But over the last 15 years many worked hard to put differential privacy in practice

There are many real and significant challenges in doing so



https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/

Early implementation of differential privacy spearheaded by Frank McSherry

https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/


https://github.com/google/rappor

Large-scale system implemented as part of 
Google Chrome. 

First major industry product feature 
involving differential privacy

https://github.com/google/rappor


https://github.com/google/differential-privacy

Source:
https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-sour
ce-tool-privacy-data-sharing

https://github.com/google/differential-privacy
https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-source-tool-privacy-data-sharing
https://www.theverge.com/2019/9/5/20850465/google-differential-privacy-open-source-tool-privacy-data-sharing


The Verge: “It was probably the most bewildering part of Apple’s [2016] WWDC Keynote: in the middle of a 
rundown of fancy new products arriving with iOS 10, Craig Federighi stopped to talk about abstract 
mathematics. He was touting differential privacy, a statistical method that’s become a valuable tool for 
protecting user data.” https://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016

https://www.theverge.com/2016/6/17/11957782/apple-differential-privacy-ios-10-wwdc-2016


From: https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf


“In June 2016, Apple announced that it will deploy differential privacy for some user 
data collection in order to ensure privacy of user data, even from Apple. The details of 
Apple's approach remained sparse. Although several patents have since appeared 
hinting at the algorithms that may be used to achieve differential privacy, they did not 
include a precise explanation of the approach taken to privacy parameter choice. 
Such choice and the overall approach to privacy budget use and management are 
key questions for understanding the privacy protections provided by any deployment 
of differential privacy.”
https://arxiv.org/abs/1709.02753

https://arxiv.org/abs/1709.02753






Stepping back
There are many challenges with putting differential privacy in practice

Computational challenges

Implementation pitfalls

Political struggles

Legal and policy hurdles



What we saw today
Differential privacy is a formal privacy notion

Natural counterfactual interpretation

Appealing properties (post-processing, composition)

Rich theory (many beautiful results we didn’t discuss)

Powerful methods to answer many queries with little noise

No panacea: Fundamental law of information recovery still relevant



Thank you.


