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Matching Markets Auctions Multiplayer games



Decisions and Learning

University of California, Berkeley

• So far we have been concerned with single decision makers. 

• In this lecture we would like to understand interactions between 

multiple decision makers. 

• We first discuss market decisions in the absence of learning, 

when participants in the market have complete information. 

• Finally, we discuss exploration-exploitation tradeoffs in markets. 



Multi-Player Bandits
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Two-sided markets 
(med-school students and hospitals)

University of California, Berkeley

• Markets often have two sides, supply and demand, which must be 
matched. 

• Matching med-school students and hospitals is a classic example 
(Roth 1984). 

• Med-school students have preferences over hospitals and hospitals 
have preferences over med-school students. 



Two-sided markets 
(med-school students and hospitals)

University of California, Berkeley

Hospitals                Students



How should we match supply and demand?

University of California, Berkeley

• Definition: a matching M is a set of pairs (h, s) such that 
– Each hospital h appears in at most one pair of M.
– Each students s appears in at most one pair of M.

• Goal: given a set of preferences among supply and demand, 
determine a matching that is an equilibrium. 

• Definition: a blocking pair (h, s) is a pair such that:
– h prefers s to its current match
– s prefers h to its current match 
– (if someone is not matched with anyone, we think of them as being 

matched with themselves)



Stable matchings

University of California, Berkeley

• Definition: a stable matching is a matching with no blocking pairs.
• Question: is the following matching a stable matching?

Hospitals                Students

• Answer: No,                 is a blocking pair.                                    



Finding stable matchings

University of California, Berkeley

• Observation: the following matching is a stable matching. 

Hospitals                Students



University of California, Berkeley

• Question: can we always find a stable matching?

• Answer: In 1962 Gale and Shapley showed that a natural algorithm 
always finds a stable matching. 



The Gale-Shapley deferred acceptance 
algorithm

University of California, Berkeley

GS (preference lists of hospitals and students):

INITIALIZE M to empty matching

WHILE (some hospital h is unmatched and hasn’t proposed to every student)

     s        first student on h’s list to whom h has not yet proposed. 

    IF (s is unmatched and s prefers to be matched with h)

        Add (h, s) to matching M.

    ELSE IF (s prefers h to current matching h’)

        Replace (h’, s) with (h, s) in matching M.

    ELSE 

       s rejects h. (From slides for Algorithm Design by 
Kleinberg and Tardos )



The GS algorithm finds stable matches

University of California, Berkeley

• Claim: the GS algorithm always outputs a stable matching, 
regardless of the problem instance.  

• Proof: there can be at most (number of hospitals) x (number of 
students) proposals, so the algorithm will terminate.

     We must show that there are no unstable pairs (h, s) as a 
consequence of the outputted matching M. 

     Let (h, s) be a pair not in M. 

     Case 1. If h never proposed to s, then h prefers its match in M over 
s because h proposed in order of its preferences. 

     Case 2. If h proposed to s, then s prefers its match in M over h 
because s always improves their match when they switch.  

     So there cannot be any unstable pairs produced by M.



Optimality of the GS match

University of California, Berkeley

• A problem instance can admit multiple stable matches. 

• Definition: (h, s) are valid partners if there exists a stable matching 
in which h and s are matched.   

• Theorem: the matching produced by GS matches each member of the 
proposing side (hospitals) with their best valid partner and matches each 
member of the passive side (students) with their worst valid partner. 

• Proof: homework exercise. Proceed by contradiction: let h be the 
first hospital to be rejected by a valid match s (one must exist if the 
final match is not hospital-optimal).  
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Multi-armed bandits provide a natural framework to understand 
exploration / exploitation trade-offs. 

Exploration vs 

Exploitation

Assume the rewards 
are Gaussian
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Recap: Regret
• Let n be the horizon (number of rounds)

• Let K be the number of arms. 

• Let  be the reward of arm  at time .

• Let  be the arm chosen at time .

• The goal is to minimize (expected) regret:

•  

𝑅(𝑛)= 𝑚𝑎𝑥
𝑖∈{1,2 ,…,𝐾 }

𝔼 [ ∑𝑡=1
𝑛

𝑋 𝑖 (𝑡)− ∑
𝑡=1

𝑛

𝑋𝑎𝑡
(𝑡)] 

Total reward 
of best arm 
in hindsight Reward obtained
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Upper Confidence Bound

Choose the arm 
with the highest 
UCB

University of California, Berkeley



Update UCB 
accordingly 

Upper Confidence Bound
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Now we 
sample this 
arm

Upper Confidence Bound

University of California, Berkeley



Regret of UCB

• Suppose arm 1 has the highest mean reward. 

• Let  , called reward gap.

• Then, the regret of UCB satisfies

•  

University of California, Berkeley



Multi-Player Bandits
Let’s add a competing player!
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Competing Bandits in Matching 
Markets

In summary: we consider a bandits market with players on 
one side, arms on the other.  

Players get noisy rewards when they pull arms. Same arm 
has different mean reward for different players.  

Arms have known preferences over players (these 
preferences can also express agents’ skill levels).

When multiple players pull the same arm only the most 
preferred player gets a reward (competition).

University of California, Berkeley



Regret in Matching Markets

Players

Arm
s1 > 3 > 2

2 > 3 > 1

1 > 2 > 3

1 > 2 > 3

3 > 1 > 2

2 > 1 > 3

• Suppose that there is some unique stable matching.

Players should always choose their stable match in hindsight!

?
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Regret in Matching Markets
• Let  be the stable match of player .

• Let  be the matching played by all the players at time t. 

• Let  be the mean reward of arm j for player  . 

•  

Define the stable regret of agent i up to time n as:

Mean reward of 
stable match

Reward at time t

University of California, Berkeley



Optimal vs Pessimal regret
• Stable match may not be unique.
• Pessimal Stable regret

• Optimal Stable regret

___ ___

___ ___

Mean reward of 
worst stable 
match

Mean reward 
of worst 
stable match

Mean reward of 
worst stable 
match

Mean reward 
of best stable 
match
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How to achieve a 
sequence of matchings that has 
low stable regret for all Players?
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Algorithm: GS-UCB
Involves a Matching Platform that communicates with all Players.

At every round:

1. Players rank Arms by the UCBs of each Arm’s mean reward for 
themselves.

2. Platform runs the Gale-Shapley algorithm to match Players and 
Arms.

3. Players receive rewards from matched Arms and update their UCB 
for the Arm.

Mean 
rewards

Arms

UCB

University of California, Berkeley



Regret of GS-UCB
Theorem (informal): If there are N players and K arms 
and GS-UCB is run, the pessimal stable regret of player i 
satisfies 

Minimum gap of arms’ rewards for all 
players.

In other words, if one player has to explore more, 
another player incurs higher stable regret. 

University of California, Berkeley



Dependence on      

• In order for p2 to be matched with their stable arm a2, p1 must 
correctly determine that they prefer  over . 

• This requires  rounds of exploration.  is ’s gap, which can be small.
• p2’s gap    can be large.           

•  

a1 > a2

a2 > a1

p1

p2

a1

a2 p1 > p2

p1 > p2
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A puzzle
• Gale-Shapley under known preferences 

guarantees the Player-optimal matching
• Gale-Shapley with preference learning (UCB) 

only has guarantees for the Player-pessimal 
stable regret. 
– Player-optimal regret can be linear in the worst case

• Why?



Special case: Global preferences
• N Players all have the same ranking over Arms

• K Arms all have the same ranking over Players

• Arm/Player 1 is the most preferred etc. 
(everyone has the preference 1 > 2 > 3 > … > N)

• In this setting, the pessimal regret of Player i is as 
follows:

Gap between Arm  and pessimal stable Arm of Player  𝓁 and pessimal stable Arm of Player i

University of California, Berkeley



Global preferences (N=K=20)
• Worst-ranked agent has 

negative regret 
(upper bound is 0)

Horizon, n

University of California, Berkeley



Incentive compatibility
• Players must match with the Arm assigned by the Platform, but they can 

potentially submit preferences other than those based on their UCBs.

• Q: How much can a Player improve their stable regret, if all other Players are 
submitting UCB preferences and the Platform is running GS?

• A: Their (optimal) stable regret can be lower bounded by

• Intuition: Player can only do better than their optimal stable arm if other 
players make ranking mistakes.

Ri(n) ≥ -O(log n)

University of California, Berkeley



Incentive compatibility
• -O(log n) is achievable. Example: Global preferences

worst ranked 
agents have 
negative log n 
stable regret

Horizon, n

University of California, Berkeley



Summary

• Many decision problems involve learning and economic 
thinking

• Looked at a multi-Player bandit problem in the setting of 
matching markets
– Notion of Stable Regret

• GS-UCB Algorithm
– Log(n) Player-Pessimal Stable Regret
– Limited gains from Player manipulation of preferences

• Many open problems remain!

University of California, Berkeley



Proof Sketches
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Single-agent UCB proof sketch
• Number of times player pulled arm i after first s rounds

• Regret decomposition

Gap between Arm i and 
Best Arm

University of California, Berkeley



If            , then one of the following must be true

A. Sample mean of best arm is too low

B. Sample mean of arm i is too high

C. Pulled arm i too few times, given how small the gap is

Single-agent UCB proof sketch

University of California, Berkeley



Single-agent UCB proof sketch

• Pulling arm i because of Event C can at most happen      

      

                   times.

• Probability of Event A and B can be bounded by a 

concentration inequality (Hoeffding)

– can happen at most a constant number of times in expectation.
Reference: Bubeck and Cesa-Bianchi, 2012

University of California, Berkeley



Main theorem preliminaries
• matching m: set of players → set of arms
• blocking pair (pj, ak)

• blocking triplet (pj, ak, ak’)
• Set of all matchings blocked by a triplet (pj, ak, ak’) is Bj,j,k’

ak > m(j) pj pj >m-1(k)

m-1(k)

ak

m(j) = ak’

University of California, Berkeley



• Given a set S of matchings, a set Q of triplets cover S if

• A matching m is full if all players are matched (N < K)

• Mi,l : set of full matchings m such that m(pi)=al

• Minimal covering of Mi,l : smallest set of blocking triplets 
that cover Mi,l

Main theorem preliminaries

University of California, Berkeley



• Notation for reward gaps:
– Mean reward gap between pessimal stable arm of Player i and Arm l for 

Player i ,         .
– Mean reward gap between Arm k and k’ for Player j                .

• Main Theorem. The pessimal stable regret of GS-UCB is

Main theorem preliminaries

University of California, Berkeley



Main theorem proof
• We may decompose regret by the number of times a 

matching happens.

• Lj,k,k’(n)  is the number of times (pj, ak, ak’)  is a blocking 
triplet, i.e. pj pulls ak’, and pj ranks ak’ above ak by 
mistake.

University of California, Berkeley



Main theorem proof

• By the usual argument for UCB, we have

For more details, see [Liu et al., 2019].

University of California, Berkeley



Corollary 

• Consider the covering: all (j,k,k’) where Player j 
prefers k to k’

• This trivially covers Mi,l for all i and l.
• Corollary.

__

Minimum gap between any pair of Arms’ 
rewards for any Player.

University of California, Berkeley



Proof sketch for incentive compatibility

• Number of times Player i pulls Arm l where l is preferred 
to its optimal stable arm

• Upper bound on Player-optimal regret

Gap between Arm  and optimal stable Arm of Player 𝓁 and pessimal stable Arm of Player  i Negative!

University of California, Berkeley
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