

DS 102: Data, Inference, and Decisions

Lecture 18

Fernando Pérez University of California, Berkeley

Slides thanks and credit: Anca Dragan, Dan Klein, Pieter Abbeel, and the Berkeley CS188 team: ai.berkeley.edu.

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North

(if there is no wall there)

- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - $\quad \text{A set of states s} \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a) 2
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

- In deterministic single-agent search problems, we want an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π*: S → A
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = -0.01

R(s) = -0.03

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - $\quad U([1,2,3]) < U([3,2,1])$

Optimal Quantities

- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s

Snapshot of Demo – Gridworld V Values

Cridworld Display			
0.64 ≯	0.74 →	0.85 →	1.00
0.57		• 0.57	-1.00
0. 49	∢ 0.43	▲ 0.48	∢ 0.28

VALUES AFTER 100 ITERATIONS

Noise = 0.2

Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2

Values of States

• Recursive definition of value:

а

s'

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max \sum_{s} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

The Bellman Equation

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with O(s a) = 0 which we know is right

$$- Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q(s,a)

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate:
 - Consider vour new sample estimate: $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ no longer policy evaluation!

- Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

Video of Demo Q-Learning -- Gridworld

